MPD performance in the fixed-target mode

P. Parfenov, M. Mamaev and A. Taranenko (JINR, NRNU MEPhI)

The 2-nd China-Russia Joint Workshop on NICA Facility 10-13 September 2024

Relativistic heavy-ion collisions

Relativistic heavy-ion collisions allows us to study QCD phase diagram

> High beam energies ($\sqrt{s_{NN}} > 100 \ GeV$):

- High *T*, $\mu_B \approx 0$
- Evolution of the early Universe

> Low beam energies ($2 < \sqrt{s_{NN}} < 11 \text{ GeV}$):

- Intermediate T, high μ_B
- Inner study of the compact stars

MPD and BM@N will study QCD matter at extreme μ_B

Several future (MPD) and ongoing (NA61/SHINE, STAR) experiments cover the same beam energy range

12.09.2024

Ch. Fuchs and H.H. Wolter, EPJA 30 (2006) 5

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

New data is needed to further constrain transport models with hadronic d.o.f.

12.09.2024

2nd China-Russia NICA

Anisotropic flow at LHC/RHIC

STAR PRL118 (2017) 212301

Gale, Jeon, et al., Phys. Rev. Lett. 110, 012302

STAR Au+Au vs_{NN} = 200 GeV ο Λ >~ 0.2 ATLAS 20-30%, EP 10-40% Parameter, □ K_e HA-I $\tau_{switch} = 0.2 \text{ fm/c}$ нен 0.2 0.15 $\langle v_n^2 \rangle^{1/2}$ Anisotropy 0.1 η/s =0.2 0.05 a 2 3 5 p_(GeV/c) 0.2 RHIC 200GeV, 30-40% <u>_</u> STAR Au+Au √s_{NN} = 200 GeV filled: STAR prelin D⁰ $\circ \Lambda$ 10-40% open: PHENIX 0.15 > ΔΞ □K₅ V₃ 0.1 Parameter, n/s = 0.12 $\langle v_n^2 \rangle^{1/2}$ V۸ 0.1 V5 þ 0.05 0.05 Anisotropy 0 b) 0.5 1.5 2 0 0.5 2.5 1.5 0 p_T [GeV] (m₁ - m₀) / n₁ (GeV/c²)

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1} \boldsymbol{v_n} \cos[n(\phi - \Psi_{RP})]$$
$$v_n = \langle \cos[n(\phi - \Psi_{RP})] \rangle$$

$$v_1 - directed flow, v_2 - elliptic flow$$

 $v_n(p_T, {
m Centrality})$ - sensitive to the early stages of the collision

Important constrain for transport properties and EOS (η /s, ζ /s, etc.)

- v_n of identified hadrons:
- Mass ordering at p_T<2 GeV/c (hydrodynamic flow, hadron rescattering)
- Baryon/meson grouping at p_T>2 GeV/c (recombination/coalescence) Number of constituent quark (NCQ) scaling

Anisotropic flow at Nuclotron-NICA energies

Bounce-off

Strong energy dependence of dv_1/dy and v_2 at $\sqrt{s_{NN}}$ =2-11 GeV

Anisotropic flow at Nuclotron-NICA energies is a delicate balance between:

- I. The ability of pressure developed early in the reaction zone $(t_{exp} = R/c_s)$
- II. The passage time for removal of the shadowing by spectators. $(t_{pass} = 2R/\gamma_{CM}\beta_{CM})$

vHLLE+UrQMD: Elliptic and triangular flow in Au+Au collisions at 200 GeV

3D hydro model vHHLE + UrQMD (XPT EOS), $\eta/s = 0.08 + param$ from Iu.A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher , Phys.Rev. C91 (2015) no.6, 064901

Reasonable agreement between results of vHLLE+UrQMD model and published PHENIX data

Elliptic flow at NICA energies: Models vs. Data comparison

Good agreement between vHLLE+UrQMD ($\eta/s = 0.2$, XPT EOS), AMPT models and STAR data for $\sqrt{s_{NN}} \ge 7.7$ GeV

Elliptic flow at NICA energies: Models vs. Data comparison

Pure String/Hadronic Cascade models give smaller v₂ signal compared to STAR data for $\sqrt{s_{NN}} \ge 7.7$ GeV

 $v_{1,2}(y)$ in Au+Au $\sqrt{s_{NN}}$ =3 GeV: model vs. STAR data

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

Model description of v_n :

- Good overall agreement for v_n of protons
- v_n of light nuclei is not described
- u_n of arLambda is not well described
 - nucleon-hyperon and hyperon-hyperon interactions
- Light mesons (π,K) are not described
 - No mean-field for mesons

Models have a huge room for improvement in terms of describing v_n

MPD Experiment at NICA

- Bi+Bi: 50M at $\sqrt{s_{NN}}$ = 9.2 GeV (UrQMD, vHLLE+UrQMD, ...)
- Centrality determination: Bayesian inversion method and MC-Glauber
- Event plane determination: TPC, FHCal
- Track selection:
 - Primary tracks
 - ► $N_{\text{TPC hits}} \ge 16$
 - ▶ 0.2 < p_T < 3.0 GeV/c
 - ▶ |η| < 1.5</p>
 - ▶ PID ToF + dE/dx

Multi-Purpose Detector in collider mode (MPD-CLD)

Anisotropic flow in MPD-CLD

Good performance for flow measurements for all methods used (EP, SP, Q-cumulants)

12.09.2024

Elliptic flow in MPD-CLD

- Charged particles only
- Primary
- |η|<1.5
- Δη = 0,1
- p_T >0.2 GeV/c
- |DCA|<3σ
- nTPC hits \geq 16
- PID: PDG code
- good agreement of the v_{2,mc} with v_{2,reco} data
- The difference at large p_T between v_{2,mc} and v_{2,reco} (non-flow)

Triangular flow in MPD-CLD

- Charged particles only
- Primary
- |η|<1.5
- Δη = 0,1
- p_T >0.2 GeV/c
- |DCA|<3σ
- nTPC hits \geq 16
- PID: PDG code
- Good performance for v_3 measurements
- Further research is required (need more statistics)

MPD in Fixed-Target Mode (FXT)

The Bayesian inversion method (Γ-fit)

Relation between multiplicity N_{ch} and impact parameter b is defined by

the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta} \qquad \frac{\sigma^2}{\langle N_{ch} \rangle} = \theta \simeq const, \ k = \frac{\langle N_{ch} \rangle}{\theta}$$
$$c_b = \int_0^b P(b')db' - centrality \text{ based on impact parameter}$$

Mean multiplicity as a function of c_b can be defined as follows:

$$\langle N_{ch} \rangle = N_{knee} \exp\left(\sum_{j=1}^{3} a_j c_b^j\right) \quad N_{knee}, \theta, a_j - 5 \text{ parameters}$$

Fit function for N_{ch} distribution: b-distribution for a given N_{ch} range:

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b)dc_b \quad P(b|n_1 < N_{ch} < n_2) = P(b)\frac{\int_{n_1}^{n_2} P(N_{ch}|b)dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch})dN_{ch}}$$

2 main steps of the method:

Centrality determination: multiplicity fit

- Nhits>16
- 0 < η < 2

Multiplicity-based centrality determination (Γ-fit) was used

12.09.2024

2nd China-Russia NICA

PID procedure

W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (2nd ed.), Springer, Verlag (2008)

Fit dE/dx distributions with Bethe-Bloch parametrization:

$$f(\beta\gamma) = \frac{p_1}{\beta^{p_4}} \left(p_2 - \beta^{p_4} - \ln\left(p_3 + \frac{1}{(\beta\gamma)^{p_5}}\right) \right)$$
$$\beta^2 = \frac{p^2}{m^2 + p^2}, \beta\gamma = \frac{p}{m}$$
$$p_i - \text{fit}$$
parameters

Fit $(dE/dx - f(\beta_{\chi}))/f(\beta_{\chi})$ with gaus in the slices of p/q and get $\sigma_p(dE/dx)$ Fit m² with gaus in the slices of p/q and get $\sigma_p(m^2)$

 $(dE/dx,m) \rightarrow (x,y)$ coordinates for PID:

$$x_{p} = \frac{(dE/dx)^{meas} - (dE/dx)_{p}^{fit}}{(dE/dx)_{p}^{fit}\sigma_{p}^{dE/dx}}, \ y_{p} = \frac{m^{2} - m_{p}^{2}}{\sigma_{p}^{m^{2}}}$$

PID procedure: Results

Flow vectors

From momentum of each measured particle define a u_n -vector in transverse plane:

$$u_n=e^{in\phi}$$

where ϕ is the azimuthal angle

Sum over a group of u_n -vectors in one event forms Q_n -vector:

$$Q_n = rac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{in \Psi_n^{EP}}$$

 Ψ_n^{EP} is the event plane angle

Modules of FHCal divided into 3 groups

Additional subevents from tracks not pointing at FHCal: **Tp:** p; -1.0<y<-0.6;

Flow methods for v_n calculation M Mamaev et al 2020 PPNuclei 53, 277-281 Tested in HADES: M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122 Scalar product (SP) method: $v_2 = rac{\langle u_2 Q_1^{F1} Q_1^{F3}}{R_1^{F1} R_1^{F3}}$ $v_1=rac{\langle u_1Q_1^{F1} angle}{R_1^{F1}}$ Where R₁ is the resolution correction factor $R_1^{F1}=\langle \cos(\Psi_1^{F1}-\Psi_1^{RP}) angle$ Symbol "F2(F1,F3)" means R₁ calculated via (3S resolution): $R^{F2(F1,F3)}_{ extsf{1}}$ 12.09.2024

Symbol "F2{Tp}(F1,F3)" means R₁ calculated via (4S resolution): $R_1^{F2\{Tp\}(F1,F3)} = \langle Q_1^{F2}Q_1^{Tp}
angle$

Results: $v_1(y)$

Systematics: xx, yy, F1, F2, F3

Good agreement with MC data

2nd China-Russia NICA

Results: $v_2(p_T)$

Systematics: xxx, xyy

Good agreement with MC data

2nd China-Russia NICA

The BM@N and MPD-FXT experiments

Detectors used for anisotropic flow measurements:

- Tracking system: FSD+GEM (BM@N); TPC (MPD-FXT)
- PID: TOF-400, TOF-700 (BM@N); TPC, TOF (MPD-FXT)
- EP measurements: FHCal (BM@N), FHCal (MPD-FXT)

Comparison with BM@N performance

BM@N TOF system (TOF-400 and TOF-700) has poor midrapidity coverage at $\sqrt{s_{NN}} = 2.5$ GeV

- One needs to check higher energies (Vs_{NN} = 3, 3.5 GeV)
- More statistics are required due to the effects of magnetic field in BM@N:
 - Only "yy" component of <uQ> and <QQ> correlation can be used

Despite the challenges, both MPD-FXT and BM@N can be used in v_n measurements:

- To widen rapidity coverage
- To perform a cross-check in the future

Summary

- Strong energy dependence of v_n at Nuclotron-NICA energy range
 - Big passing times \rightarrow spectators influences flow formation
 - v_n at V_{SNN} >7.7 GeV: models with QGP
 - v_n at $V_{S_{NN}}$ < 7.7 GeV: models without QGP (cascade or mean-field models)
- Performance study for the anisotropic flow measurements was shown for the MPD-FXT using realistic procedures for centrality determination, primary track selection and PID:
 - Multiplicity-based centrality determination using Γ-fit shows good agreement between fit and data
 - Overall good agreement between the estimated fit and impact parameter with the corresponding values taken directly from the model
 - Basic PID was performed using dE/dx from TPC and m² from TOF
- Directed and elliptic flow of protons and pions were measured for $v_{S_{NN}} = 2.5, 3, 3.5$ GeV:
 - Good agreement between reconstructed and model data within corresponding acceptance windows for all particle species
- Both MPD-FXT and BM@N can complement each other in terms of v_n:
 - Cross-checks can be performed to test the implemented flow measurement techniques
 - Using results from both experiments can widen the rapidity coverage no single fixed target experiment can achieve that!

New data from the BM@N and MPD (MPD-FXT) is required to address existing discrepancies in the experimental data and provide further constraints for the EoS in the models

Backup

Hybrid models for anisotropic flow at RHIC/LHC

1. UrQMD + 3D viscous hydro model vHLLE+UrQMD

Iurii Karpenko, Comput. Phys. Commun. 185 (2014), 3016 <u>https://github.com/yukarpenko/vhlle</u> Parameters: from Iu. A. Karpenko, P. Huovinen, H. Petersen, M. Bleicher, Phys. Rev. C91 (2015) no.6, 064901 – good description of STAR BES results for v_2 of inclusive charged hadrons (7.7-62.4 GeV)

<u>Initial conditions:</u> model UrQMD <u>QGP phase:</u> 3D viscous hydro (vHLLE) with crossover EOS (XPT) <u>Hadronic phase:</u> model UrQMD

2. A Multi-Phase Transport model (AMPT) for high-energy nuclear collisions

The main source code (Zi-Wei Lin): <u>https://myweb.ecu.edu/linz/ampt/v1.26t9b/v2.26t9b</u>

<u>Initial conditions</u>: model HIJING <u>QGP phase</u>: Zhang's parton cascade for modeling partonic scatterings <u>Hadronic phase</u>: model ART

Z.W. Lin, C. M. Ko, B.A. Li, B. Zhang and S. Pal: Physical Review C 72, 064901 (2005).

24.07.2022

Sensitivity of the collective flow to the EOS

Models with flexible EOS for different (K_0, n_B) are required

Nuclotron-NICA coverage in terms of density: $2 \leq n_B/n_0 \leq 8$

Selecting the model

- The main source of existing systematic errors in v_n measurements is the difference between results from different experiments (for example, FOPI and HADES, E895 and STAR)
- New data from the future BM@N ($\sqrt{s_{NN}}$ =2.3-3.3 GeV) and MPD ($\sqrt{s_{NN}}$ =4-11 GeV) experiments will provide more detailed and robust v_n measurements

v_n at Nuclotron-NICA energies

P. DANIELEWICZ, R. LACEY, W. LYNCH 10.1126/science.1078070

- v_n results from the E895 experiment are ambiguous:
 - v₁ suggests EoS and v₂ suggests hard EoS
- Additional experimental data are required to address this discrepancy

V0 selection: PFSimple

PFSimple: interface for the KFParticle package

KFParticle: package developed for complete reconstruction of short-lived particles

- Successfully used in many experiments
- Based on the Kalman filter mathematics
- Independent in the sense of experimental setup (collider, fixed target)

First tests for Λ , K_S^0 from the MPD-FXT production are ready:

• Basic topological cuts:

$$\chi^2_{topo} < 50, \chi^2_{geo} < 50, L > 3 \ cm, \frac{L}{dL} > 5 \ cm$$

Signal extraction: sideband fits, rotation background were tested

PFSimple is already available as a module in the cvmfs

$v_n(y)$ in Au+Au $\sqrt{s_{NN}}$ =2.4 GeV: models vs. HADES data

Overall trend reasonably well described, but no model works everywhere

12.09.2024

2nd China-Russia NICA

 $v_{1,2}(y)$ in Au+Au $\sqrt{s_{NN}}$ =3 GeV: model vs. STAR data

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

Model description of v_n :

- Good overall agreement for v_n of protons
- v_n of light nuclei is not described
- v_n of arLambda is not well described
 - nucleon-hyperon and hyperon-hyperon interactions
- Light mesons (π,K) are not described
 - No mean-field for mesons

Models have a huge room for improvement in terms of describing v_n

New STAR results from BES-II

New preliminary results from STAR BES-II were presented at QM-2023 for Au+Au at $\sqrt{s_{NN}}$ =3, 3.2, 3.5, 3.9 GeV

Anisotropic flow & spectators

The azimuthal angle distribution is decomposed in a Fourier series relative to reaction plane angle:

$$arphi(arphi-\Psi_{RP})=rac{1}{2\pi}(1+2\sum_{n=1}^\infty v_n\cos n(arphi-\Psi_{RP}))$$

Anisotropic flow:

$$v_n = \langle \cos\left[n(arphi - \Psi_{RP})
ight]
angle$$
 v_1 - directed flow, v2 - elliptic flow

Anisotropic flow is sensitive to:

Compressibility of the created matter
 $\begin{pmatrix} t_{exp} = R/c_s, \ c_s = c\sqrt{dp/d\varepsilon} \end{pmatrix}$
 Time of the interaction between overlap
 region and spectators
 $\begin{pmatrix} t_{pass} = 2R/\gamma_{CM}\beta_{CM} \end{pmatrix}$

Sensitivity of the collective flow to the EOS

P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002) 1592

EoS extraction: define incompressibility

$$K_0 = 9\rho^2 \frac{\partial^2(E_A)}{\partial\rho^2}$$

Discrepancy in the interpretation:

- v_1 suggests soft EoS ($K_0 \approx 210$ MeV)
- v_2 suggests hard EoS ($K_0 \approx 380$ MeV)

New measurements using new data and modern analysis techniques might address this discrepancy

Additional measurements are essential to clarify the previous results

2nd China-Russia NICA

Centrality determination: vs Centrality

Cuts on tracks:

- Nhits>16
- 0 < η < 2

Multiplicity-based centrality determination using inverse Bayes was used

Results: $v_1(p_T)$

Systematics: xx, yy, F1, F2, F3

Good agreement with MC data

Results: $v_2(y)$

Systematics: xxx, xyy

Good agreement with MC data

Elliptic flow at NICA energies: Models vs. Data comparison

Pure String/Hadronic Cascade models give similar v₂ signal compared to STAR data for Au+Au $\sqrt{s_{NN}}$ =4.5 GeV

The BM@N experiment (GEANT4 simulation for RUN8)

Square-like tracking system within the magnetic field deflecting particles along X-axis

Charge splitting on the surface of the FHCal is observed due to magnetic field

Sensitivity of the collective flow to the EOS

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

- SMASH model with flexible EOS was used to test the sensitivity of the v_n to changes of EOS in a specific density range n/n_0 :
 - $2 < n_B/n_0 < 3$: dv_1/dy' and v_2 of pions, protons and deuterons are very sensitive to the EOS
 - $3 < n_B/n_0 < 4$: dv_1/dy' and v_2 of protons and deuterons are sensitive to the EOS
 - \circ 4 < n_B/n_0 < 5: weak sensitivity to the EOS

The most precise constraints can be achieved from the flow of identified hadrons ($\pi^{\pm}, K^{\pm}, p, ...$) and light nuclei (d, t, ...)

Performance of $v_{1,2}$ of Λ hyperons in MPD

V. Troshin

Good performance for v_1 , v_2 using invariant mass fit and event plane methods

Motivation of elliptic flow fluctuation study

 v_2 fluctuations at $\sqrt{s_{NN}}$ =11.5-39 GeV observed in STAR:

• Weak dependence on collision energy

- Indicate a dominated initial state driven uctuations $\sigma_{\epsilon 2}$
- Provide constraints for IS models and shear viscosity η(T/s)

How about v2 fluctuations at NICA energies?

Relative v₂ fluctuations of identified hadrons

- Weak dependence between $v_2{4}/v_2{2}$ of protons and pions at 11.5 GeV
- The difference between $v_2{4}/v_2{2}$ of protons and pions increases with decreasing energy

Anisotropic flow at Nuclotron-NICA energies

Flow at >7.7 GeV, flow at 4.5 GeV, flow at <3 GeV Our works so far with the collider mode FXT allows to widen the energy coverage of MPD