Forward upgrade: physics and possible solutions

Evgeny Kryshen for the MPD collaboration Petersburg Nuclear Physics Institute

The 2nd China-Russia Joint Workshop on NICA Facility 12 Sep 2024

Stage I setup

Extend rapidity coverage with forward tracker?

Outline

- Do we need forward tracker?
- Can we integrate the tracker in the current MPD setup?
- Can we measure track momentum at forward rapidities with existing solenoid field?
- What is the impact of TPC endcaps on the track resolution?
- Track finding at forward rapidity in high multiplicity collisions?
- Can we measure **PID** at forward rapidities?

Do we actually need forward tracker?

Pseudorapidity coverage

- TPC covers only ~55% of particle production yield in central events
- Forward tracker would allow us to cover more than 80%

The Horn

- The horn: sharp maximum in the ratio of strange particle to pion yields
- Interpretation in statistical model (SMES): change of strangeness / entropy ratio due to deconfinement transition
- For precision measurements, we need strange particle yields (K, Λ) in the full phase space including 1.2<|η|<2.0

7

See also talk by V. Kolesnikov

Rapidity distributions for protons and light nuclei

A forward tracker with PID may provide a substantial increase of MPD capability for baryon measurements (stopping, total yields)

NA61: EPJC 84 (2024) 416

The Step

- **The Step:** flattening of the inverse slope parameter T^* extracted from m_T spectra of various particle species
- Interpretation in statistical model (SMES): mixed phase at early stages
- m_{T} or p_{T} spectra for various particle species at forward rapidity would be desirable

Angular correlation studies

Angular correlation studies strongly profit from extended pseudorapidity coverage:

- stay away from jet peak
- much higher statistics for 4-particle and 8-particle cumulants
- study decorrelation effects vs η...

Directed flow of charged pions

- $v_1(\eta)$ sensitive to the shear viscosity to entropy (η /s) ratio
- $v'_1(\eta)$ in both spectator and participant regions may provide insights into the baryon stopping mechanism (see 2211.16408)
- Need wide rapidity coverage!

Directed flow of net protons

STAR BES II

- Model predicts sign change at ~ 5 GeV with 1st order phase transition
- proton and net-proton v_1 change sign around 10-20 GeV
- Need wide rapidity coverage to measure v₁ shape

https://indico.cern.ch/event/1176274/contributions/5323690/

And more...

- thermal photons via conversions on TPC endcaps
- global polarization of Λ hyperons: rapidity dependence?
- improve precision of centrality and reaction plane determination
- improved trigger efficiency for small systems
- possibility to access various observables of the SPD physics program (need continuous readout)
- aspects of non-perturbative QCD, e.g. diffractive studies, QCD instanton
- and more ...

More ideas/suggestions for the physics program are highly welcome!

Can we actually integrate the tracker in the current MPD setup?

Limitations from realistic 3D model

- Radial limitations:
 - \circ R_{inner} = 357 mm
 - R_{outer} = 1300 mm
- Two volumes possible:
 - Green: z from 2100 to 2450 mm
 - Pink: z from 2550 to 2950 mm
 - The gap due to beam pipe support (can be eliminated if beam pipe is fixed to the tracker volume)
- Resulting pseudorapidity coverage:

$$\circ \quad \eta_{\min} = 1.55$$

 \circ η_{max} =2.47

Can we measure track momentum at forward rapidities with existing solenoid field?

The problem

- Momentum resolution in the solenoid field is driven by the radial distance available for track curvature measurement
- Strongly degrades towards large η
- Two options to improve momentum resolution:
 - minimize multiple scattering effects (reduce effective radiation length)
 - \circ improve hit resolution

Possible technology: straws similar to SPD endcap tracker?

SPD endcap tracker proposal

NA62

SPD TDR: <u>2404.08317</u>

<u>NA62 TDR</u>

- Hit resolution ~ 80 100µm
- Small material budget (~1% X₀)
- Large areas (not feasible with silicon detectors)

Transverse momentum spectra at forward rapidity

- Pion p_{τ} : mainly below 1 GeV, ideally need to go down to 0.1 GeV to catch the maximum
- Proton p_{T} goes far beyond 1 GeV...
- Let's try 0.1 1 GeV region for the moment

Use ACTS for tracking

https://acts.readthedocs.io/

- A Common Tracking Software project
- Contains:
 - Box generator or interface to read external particles
 - Fatras (fast simulation tool) or interface to read hits
 - Digitization algorithm (smearing etc)
 - Seeding (several algorithms, including truth seeding)
 - Track finding/fitting with Combinatorial KF
- Accounting for energy losses, multiple scattering etc.
- Supporting multi-core execution, GPU etc.

// Start sequencer

ActsExamples::Sequencer sequencer(sequencerCfg);

if (inputDir.Contains("none")) { // particle gun + fartras simulation sequencer.addReader(std::make shared<ActsExamples::EventGenerator>(evgenCfg, logLevel)); sequencer.addElement(std::make shared<ActsExamples::FatrasSimulation>(fatrasCfg, logLevelFatras)); else { // read particles and hits from input file sequencer.addReader(std::make shared<ActsExamples::RootParticleReader>(particleReaderCfg, logLevel)); sequencer.addReader(std::make shared<ActsExamples::RootSimHitReader>(simhitReaderCfg, logLevel)); sequencer.addAlgorithm(std::make_shared<ActsExamples::DigitizationAlgorithm>(digiCfg, logLevelDigi)); sequencer.addAlgorithm(std::make shared<ActsExamples::SpacePointMaker>(spCfg, logLevel)); sequencer.addAlgorithm(std::make shared<ActsExamples::SeedingAlgorithm>(seedingCfg, logLevelSeed)); sequencer.addAlgorithm(std::make shared<ActsExamples::TrackParamsEstimationAlgorithm>(paramsEstimationCfg, logLevel)) sequencer.addAlgorithm(std::make_shared<ActsExamples::TrackFindingAlgorithm>(trackFindingCfg, logLevelFinder)); sequencer.addAlgorithm(std::make shared<ActsExamples::TrackTruthMatcher>(trackTruthMatcherCfg, logLevelMatcher)); sequencer.addWriter(std::make shared<ActsExamples::RootParticleWriter>(particleWriterCfg, logLevel)); sequencer.addWriter(std::make shared<ActsExamples::RootSimHitWriter>(simhitWriterCfg, logLevel)); sequencer.addWriter(std::make shared<ActsExamples::RootMeasurementWriter>(measWriterCfg, logLevelMeasWriter)); sequencer.addWriter(std::make_shared<ActsExamples::RootSpacepointWriter>(spWriterCfg, logLevel)); sequencer.addWriter(std::make_shared<ActsExamples::RootSeedWriter>(seedWriterCfg, logLevel)); sequencer.addWriter(std::make shared<ActsExamples::RootTrackStatesWriter>(trackStatesWriterCfg, logLevel)); sequencer.addWriter(std::make shared<ActsExamples::RootTrackSummaryWriter>(trackSummaryWriterCfg, logLevel));

20

Getting used to ACTS tracking algorithms...

Considering "ideal" tracker:

- 5 tracking layers placed between 210 and 300 cm
- $R_{inner} = 35.7 \text{ cm} \rightarrow \eta_{max} = 2.47$
- $R_{outer}^{max} = 130 \text{ cm} \rightarrow \eta_{min}^{max} = 1.55$
- Thickness per layer: 200 um silicon ~ 0.2% X₀
- Gaussian smearing in x and y with $\sigma = 80 \text{ um}$

Simulation config:

- Particle gun (π or p) with p_T from 0.1 to 1 GeV
- Build-in fatras transport (only EM processes)
- Seed finding using hits on first three layers (adopte seed finding algorithm for cylindrical layers)
- Track finding with combinatorial Kalman filter

Study:

- seeding and tracking efficiency vs $\boldsymbol{p}_{_{T}}$ and $\boldsymbol{\eta}$
- p_T resolution vs p_T and η
- pulls (residuals normalized to estimated uncertainty)

Example event: pion 110 MeV at $\eta = 1.6$

Visualization: hits in xy plane

- green findable primary (5 hits, $p_{T} > 100 \text{ MeV}$)
- red found seed

Seeding algorithm:

- xy plane: helix pointing to $(x,y) \sim (0,0)$. impact parameter in r < impactMax ~ rMin
- rz plane: angular difference between two doublets consistent with expected mult. scattering
- selection on impact parameter in z direction

Tracking efficiency without TPC endcap

- Perfect efficiency for pions and protons in all eta regions
- Drop at 0.1 GeV due to limitation of the default seeding algorithm (curvature radius should be larger than R_{max}/2)

Momentum resolution

What is the impact of TPC endcaps on the track resolution?

Radiation length of TPC endcaps in mpdroot

Integrated radiation length: 160 < z < 200 cm

- Using standard fairroot tools:
 - particle gun with geantinos
 - fRun->SetRadLenRegister(kTRUE)
 - Analysing "RadLen" branch with TClonesArray of "FairRadLenPoint"
 - All structures (e.g. FEC) are clearly visible
 - ~ 0.2-0.3 X_0 in ROC region

Typical energy loss of pions and protons ($\eta \sim 1.6$, $p_{\tau} = 0.35$ GeV)

- Two-peak structure corresponding to particles crossing 25% and 110% X₀ regions
- Mean energy loss can be corrected by KF

Toy TPC model with realistic endcap radiation length

Integrated radiation length: 160 < z < 200 cm

Integrated radiation length: 160 < z < 200 cm

• Toy model with ROC-like and Frame-like layers

Toy TPC+FWD model in mpdroot

Momentum resolution in the ROC region (25% X_0)

- Significant degradation of momentum resolution at low p_T ⇒ but still better than 10%
- Combine TPC and forward tracks to improve resolution?

Track finding at forward rapidity in high multiplicity collisions?

Event displays with/without TPC endcap

• black: tracks below 0.1 GeV threshold

Event displays with/without TPC: high multiplicity

• black: tracks below 0.1 GeV threshold, gray: secondaries

Tracking efficiency without TPC endcap

- Reasonably high efficiency, especially for protons
- Reduced efficiency for pions explained by pion decays

Tracking efficiency with ROC (25% X_0), but without frame

- 5%-tish efficiency losses due to nuclear interactions with TPC endcap (AI ~ 2.2 cm):
 - pion interaction length for AI ~ 40 cm
 - nuclear interaction length for AI ~ 50 cm

PID at forward rapidities?

Time-of-flight measurements?

- TOF: replace the last station with RPCs?
 - \circ ~ 50 ps resolution
 - At relatively large distance (~ 3m)
 - BUT: poor momentum resolution...

See talks by Yongjie Sun and Vadim Babkin

Toy model for TOF resolution estimates

- Generate π, K, p with box generator in different η ranges
- Extract time (t_{MC}) and track length (L) from the measurement in the last station
- Apply Gaussian smearing to the MC time to mimic reconstructed time t
- Derive $\beta = L/t/c$
- Smear MC momentum according to theoretical momentum resolution estimates

 $\eta = 1.5$

• Derive m²

Squared mass distributions for 50 ps TOF resolution

 $\eta = 1.5$

 $\eta = 2.0$

- Momentum resolution also plays an important role for PID
- Good π/K and K/p separation

Conclusions and next steps

- Strong physics potential of the forward tracker
 - need further polishing and detailed quantitative studies
 - new ideas are highly welcome!
- First tracker prototype implemented in mpdroot
- Realistic track finding and track fitting using ACTS
 - tools are ready to study various detector options
- Track momentum can be measured with reasonable precision up to η ~2.2
- Particle identification with TOF looks feasible
- NEXT:
 - study the impact of momentum/PID resolution effects on physics observables
 - choose detector technology: your input is highly welcome!
 - more realistic simulations and further optimization of the forward tracker setup