Functional renormalization group approach to some problems of condensed matter physics

G. Kalagov

This short scientific report explores superfluid phase transitions in quantum matter, focusing on the application of functional renormalization group (FRG) methods to understand these phenomena. The key points I will stick to are

- 1. **Modern State of Phase Transitions in Quantum Matter:** The report begins with an overview of the current understanding and significance of phase transitions in quantum matter (atomic gases), highlighting recent advancements and ongoing challenges in the field.
- 2. **Theoretical Framework Functional Renormalization Group**: The FRG is introduced as a powerful theoretical tool for studying phase transitions. Its ability to handle complex, nonperturbative effects makes it ideal for analyzing the scale dependence of coupling constants in quantum systems.
- 3. **Critical Properties in Large Spin Fermionic Systems**: The study specifically examines the phase transition to superfluid order in SU(N) symmetric fermionic systems. This is achieved by modeling the system using a bosonic field theory that accounts for fluctuations in the order parameter.
- 4. **Nonperturbative Analysis of Couplings**: The FRG method is used to nonperturbatively track the scale dependence of the theory's couplings, providing insights into how these couplings evolve near the critical point.
- 5. **Fluctuation-Induced First-Order Phase Transition**: One of the key results is the identification of a first-order phase transition induced by fluctuations. The nature of this transition varies with the coupling strength:
- Weak-Coupling Regime: In this regime, the order parameter exhibits a small jump, leading to an almost continuous phase transition.
- Strong-Coupling Regime: Here, the transition is marked by a significant discontinuity in the order parameter, making the phase change more distinct and detectable.

The findings on the possible fluctuation-induced first-order phase transition enhance the theoretical framework and may provide a deeper insight into the behavior of large spin fermionic systems near critical points.