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Intro

● Problems in common NN APIs
● ROC auc or signal significance as fitness function
● Accounting for uncertainties of the input variables
● Switching on/off some of the input neurons
● Control of overtraining directly for the observable parameters
● Optimization of NN hyperparameters
● Memory leaks in some python-based APIs

● Evolutionary algorithms for NN training
● No need for differentiability of the fitness function
● Simultaneous optimization of parameters and hyperparameters
● Custom criteria of the overtraining
● C++ based API with cpu optimization snd transparent memory 

management

● Application to the muon-pion identification
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Problems in common NN APIs:  differentiability of the loss

● The majority of training algorithms require (numerical) differentiability of 
the fitness (loss) function. Despite all of them combine stochastic and 
deterministic approaches, most are based on gradients or similar 
predictions of the fitness function, for which differentiability is needed.

● Finding steepest descend even for differentiabel multidimansional 
function can be a complex problem.

● Physically meaningful observables (e.g., signal over background 
significance or efficiency at a certain working point) are not (or poorly) 
differentiable. It means they can be poorly optimized by deterministic 
algorithms.

● AUC-ROC or ‘signal significance’ are simply not implemented as optional 
loss functions in existing NN APIs.
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http://www.icml-2011.org/papers/198_icmlpaper.pdf



Problems in common NN APIs: uncertainties of inputs and switching off neurons

● Input variables are usually have experimental uncertainties, that have to 
be accounted for.

● Some physical input variables are not defined in some input events OR 
have different dimensions  in different events. Accounting for such events 
is not straightforward without introducing bias to classification.

● It may be wasteful to ignore events where not all inputs defined. 
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Problems in common NN APIs: overtraining

● Overtraining consists in NN being trained to data fluctuations instead of 
real kinematics, giving better performance than that possible from 
signal/BG kinematic differences.

● In case real data would fluctuate in the opposite direction compared to 
the training MC sample, the classification performace will 

● It’s desirable to control overtraining via the same fitness function for 
which training is performed plus (optionally) additional kinematic variables 
or NN output values. This is not directly implemented in most of existing 
NN API.
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Problems in common NN APIs: hyperparameters optimization

● In addition to explicit parameters (synapse 
weights, neuron shifts) NN includes a lot of 
implicit parameters (number of layers, neurons 
in layers, activation functions, specific set of 
input variables, options for training algorithm, 
etc.) that are referred to as hyperparameters.

● Particular choice of hyperparameters can 
substantially affect the performance of the NN. 
Intuitive choices are often far from optimal.

● There are applications that allow optimization 
of hyperparameters (e.g., optuna). In practice 
they show poor performance, since 
hyperparameter space is essentially irregular.

● Moreover, memory leaks is a common 
problem for the hyperperameter optimization 
applications being applied to python based NN 
APIs. 6



Evolutionary algorithm for NN training 

● Most of this problems can be (partially) solved. However, a lot of custom 
code required.

● Some of the problems (like feeding non-differentialble loss to gradient 
training algorithm,  optimization of hyperparameters and memory leaks) 
are problematic to address.

● One of the possible solutions is using custom NN API (c++ based in my 
case) that uses evolutionary algorithm for training.

● Non-differentiable functions are allowed, since no gradients are 
computed.

● Uncertainties of the input values can be included and reflected to the 
uncertainty of the NN input, thus automatically accounting for different 
‘importance’ of different input events.

● Input neurons can be ‘switched off’ for those events where some of inputs 
are not defined.

● Overtraining is controlled by comparing ROC-AUC, significance or NN 
output distributions between training and testing samples.

● Hyperparameters can be optimized alongside explicit parameters, c++ 
code allows simple and transparent memory management.
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Evolutionary algorithm for NN training 

● This custom NN API is applied to the pion-muon identification task.
● Just 3 input variables are used for the test purpose (track length, track 

length in RS, number of hits in RS)
● NN implementation is simple, involving classes for neuron layers and 

synapse connection layers.
● Deep NN with 2 hidden layers (15, 9 neurons) is constructed, containing 

189 synapse connections (~380 explicit parameters)
● Population of 50 neural networks is created
● At each training step (generation) the one or few best performing NNs 

give rise to their children with random mutations of the parameters 
applied

● Overtraining is controlled by the difference between ROC-AUC for 
training sample and testing sample.
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Track candidates: NN application. Muons and pions with 1.5GeV > pT > 2.1GeV

● Background suppression
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Possible WP:
● Signal eff  9.902e-01  BG rejection  5.451e-01
● Signal eff  9.813e-01  BG rejection  6.407e-01
● Signal eff  6.938e-01  BG rejection  9.901e-01
● Signal eff  7.972e-01  BG rejection  9.802e-01



Track candidates: NN response to signal (red) and background (green)
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Track candidates: NN response to signal (red) and background (green)
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● Overtraining is controlled by 
comparing ROC-AUC for 
testing and training samples

● The observed difference is 
<0.4 permille

● Comparison of NN response to 
training and testing samples for 
signal and background are 
shown on the plots. No 
systematic deviations are 
seen.



conclusions and plans

● Custom NN trained by evolutionary algorithm showed better performance w.r.t. 
signal/background efficiency as compared to keras-based NN.

● It is possible to implement ROC-AUC value as loss without problems in training.

● Training takes ~2-5 min on a typical CPU. For complex networks it’s going to be slower...

● Instead of ROC-AUC optimization one may try optimizing a specific working point 
performance, e.g., maximize signal efficiency at the point with background rejection of 99%.

● Add more variables (like pt)

● Using this NN output plus requirement of two opposite charge muons in the event, plus 
information about common vertex, charmonia decaying to muon pairs selection algorithm 
can be implemented (in progress).
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back-up

13



Track candidates: input variables
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Track candidates: input variables
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