

А.Н. ШАЛЮГИН НЭОМАП ЛЯП Исследование характеристик модулей при создании жидкоаргонового торцевого адронного калориметра установки ATLAS. (по материалам диссертации)

- 1. Цели и задачи диссертационной работы.
- 2. НЕС-калориметр.
- 3. Ионизация в жидком аргоне.
- 4. Загрязнение кислородом жидкого аргона.
- 5. Серийное производство.
- 6. Проверка на тестовом пучке SPS-ускорителя.
- 7. Радиационная стойкость системы н/в питания.
 8. Выводы.

 22/05/2024 Семинар ЛЯП

Мотиватор В.Н. ПЕРВУШИН 14.09.1944-10.07.2016

1. Цели и задачи работы

• Протестировать следующие составные элементы НЕС-калориметра с помощью специальных радиационных тестов на этапе подготовки к серийному производству модулей:

- конструкционные материалы и электронные компоненты на предмет загрязнения кислородом жидкого аргона;
- переднюю детекторную электронику (GaAs-чипы) при температуре жидкого азота и систему её низковольтного питания при комнатной температуре на предмет радиационной стойкости.
- Провести высоковольтный тест на воздухе и в жидком аргоне в финальной фазе процесса серийного производства модулей НЕС-калориметра.
- Провести выборочную проверку модулей калориметра на тестовом пучке SPSускорителя (CERN) с целью получения разрешения на электронах и адронах.

Параметр	Значен.	2. НЕС-калориметр.	Параметры	НЕС1 -	НЕС2 -
Вес модуля/плиты HEC1-калориметра	2.1т/90кг			калоримет	калоримет
	2.9-/1.90	Feedthroughs and		p	p
вес модуля/плиты песе-калориметра	2.8T/18UKF	Hadronic end-cap front-end crates	Количество колёс	2	2
Толщина по оси Z HEC1-калориметра (в тепле)	816.5 мм	calorimeters	Вес каждого колеса	67300 кг 32	89 900 кг 32
Толщина по оси Z HEC2-калориметра (в тепле)	961.0 мм	Forward calorimeters	Расстояние между модулями	2 мм	2 мм
Внешний радиус НЕС-калориметра (в тепле)	2090 мм		по азимуту (углу ф)		
Ср. просвет между внутр радиусами и трубой FCAL	15 мм				
Внешний радиус медных плит НЕС (в тепле)	2030 мм				
Внутренний радиус НЕС-калориметра:			T		
плиты №№1÷9 (в тепле)	372 мм		AST	5	
все другие плиты (в тепле)	475 мм	Electromagnetic end-cap calorimeter	A A A		0
Расстояние между медными плитами НЕС1 и НЕС2	40.5 мм				
4óm		× \$5			
25m Coroid Magnets SemiC	Transition Radia	Image: Source of the sector of the secto		3	
Muon Spectrometer Solenoid Magne	et				

3. Ионизация в жидком аргоне (1/2).

1.
$$Q = Q_0 \cdot \frac{\lambda}{d} (1 - e^{-\frac{d}{\lambda}}) \cdot \frac{E}{E_0} \cdot \frac{2}{\sqrt{\pi}} \int_0^\infty \frac{\sqrt{x} \, dx}{\frac{E}{E_0} \cdot e^x + 1}$$
, где $E_0 = 798 \left(\frac{\kappa B}{c_M}\right)$
Уравнение
движения
ионов
Г. Йаффе́
1913г.
2. $Q = Q_0 \cdot \frac{\lambda}{d} \cdot (1 - e^{-\frac{d}{\lambda}}) \cdot \frac{E}{E_0} \cdot ln \left(1 + \frac{E_0}{E}\right)$, где $E_0 = 470 \left(\frac{\kappa B}{c_M}\right)$
 $F_{ATT} = \frac{\lambda}{d} \left(1 - e^{-\frac{d}{\lambda}}\right) = \frac{Q_{After}}{Q_{Before}}$, где $\lambda = \frac{\alpha \cdot E}{p}$,
 $d = 0.07$ см, $\alpha = 0.14 \frac{ppm \cdot cM^2}{B}$
 p - концентрация кислорода в ppm (1 на 10⁶ атомов)

1. W. Hofmann et al., Production and transport of conduction electrons in a liquid argon ionization chamber, Nucl. Instr. And Method v.135, <u>1976</u>, p.151-156.

2. J. Thomas, D.I. Imel, Recombination of electron-ion pairs in liquid argon and liquid xenon, Physical Reveiw A36 No.2, <u>1987</u>, p.614-616.

Методика нахождения концентрации атомов кислорода при облучении материалов и электроники жидкоаргоновых калориметров γ -квантами и быстрыми нейтронами через фактор ослабления заряда. $(F_{ATT}$ - Attenuation Factor)

Attenuation factor

3. Ионизация в жидком аргоне (2/2).

Развитие методологии описания ионизации (получения более точной функции аппроксимации экспериментальных данных).

Предположение, что E_0 не является константой, а зависит от E. Для экспериментальных данных, касающихся электроники FCAL-калориметра, использовалась улучшенная функция «бокс»-модели Томаса-Аймела для аппроксимации зарядовой кривой ионизации жидкого аргона от α -частиц :

$$m{Q} = F_N \cdot m{Q}_0 \cdot rac{E}{E_0} ln\left(1 + rac{E_0}{E}\right)$$
, где $m{E}_0 = a\left(1 - ke^{-bE}\right) \left(rac{\kappa B}{c_M}
ight)$, $F_N = 0.997 \pm 0.005$

Получены параметры аппроксимации зарядовой кривой ионизации жидкого аргона: $a = 720.6 \pm 5.6 \ \kappa B/cm, b = 0.083 \pm 0.004 \ cm/\kappa B,$ $k = 0.48 \pm 0.01$ <u>Примечание.</u> $Q_0 = e \frac{E_{\alpha}}{W} = 37.1 \ (\phi \text{Кл}) \ \text{для } \alpha$ -источника Am-241. $(W=23.6 \pm 0.5 \ \Im B \ \text{ и } E_{\alpha} = 5.468 \ M \Im B)$

 $(W=23.0\pm0.39D$ M E_{α} -3.400 M19

4.Загрязнение кислородом жидкого аргона (1/4). Установка.

4. Загрязнение кислородом жидкого аргона (2/4). Инспекция на установке.

Инспекция многофункциональной установки Крис Орам (Chris Oram) Хорст Оберлак (Horst Oberlack)

4. Загрязнение кислородом жидкого аргона (3/4). Спектр нейтронов. Гамма-доза.

Нейтроным активационным анализом измеряется выход следующих пороговых реакций: $In^{115}(n,n')In^{115m}$, $Ni^{58}(n,p)Co^{58}$, $Fe^{54}(n,p)Mn^{54}$, $Ti^{46}(n,p)Sc^{46}$, $Ti^{47}(n,p)Sc^{47}$, $Ti^{48}(n,p)Sc^{48}$, $Al^{27}(n,\alpha)Na^{24}$, который позволяет построить спектр.

ИБР-2: физический	пуск в 1984г.
Топливо: 90кг PuO ₂	Замедлитель: Н ₂ О
Теплоноситель: Na	Отражатель: Ве/Fe

Средняя тепловая	2 МВт
мощность	
Пиковая мощность	1500 MB
Уровень мощности	0,1 МВт
между импульсами	
Длительность импульса	215 мкс
мощности (ПШПМ)	
Частота повторения	5 Гц
импульсов	
Пиковая плотность	1 10 ¹⁶
потока тепловых нейтр.	H CM ⁻² C ⁻¹
на замедлителе	2π

Цикл работы реактора 250часов: 1.0·10¹⁶нейтрон см⁻², 100 кГрей

Дозиметры ТLD-термолюминесцентные РАD-фотолюминесцентные аланиновые RPL-радиофотолюминес центные

<u>у-излучение (Грей/ч) с:</u> Рb-фильтром

Дозиметр	Перед		Внутри		За	
	криостат		криостата		криостат	
D _γ _TLD			48±	8		
D _{total} PAD	11	.64±16			435±3	
D _{total} _RPL	759±60				195±27	
(<i>n</i> , <i>y</i>)) -конвер т о Пер		гором	1 (B	4 C)	
Дозиметр			ед		3a	
		криост	гатом	кр	иостатом	
D _y _TLD		466±40		:	170±10	
D _{total} PAD	627±		±19		216±4	
D RPL			+89		226+51	

А.Н. Шалюгин ЛЯП

5. Серийное производство.

ЛЯП Корпус 113 Комната 112

Укладка модуля: Медная плита Нопеусотb Электроды

Длительный тест (21день): напряжение 2.5 кВ ток <300 нА Воздух

6. Тестовый пучок SPS-ускорителя(1/4).

Наименования	Значения
Макс. момент протонов	450 ГэВ/с
Название выводной мишени	T4 (H6-line)
Количество частиц в сбросе	51.3·10 ¹¹
Множественность	11
Период сбросов	14.4 сек
Продолжительность сброса	2580 мсек

Характеристики

-диапазон энергий: от 6 ГэВ до 200 ГэВ -тип частиц: электроны, позитроны, μ^{\pm} , π^{\pm} -апертура триггерных счётчиков F1 и F2: 50*50 кв. мм -рабочая область для калибровки модулей диаметр окна криостата: 60 см зона отклонения магнитов (X,Y): 60см*50 см -база от BEBD-9 до криостата: 22.82 м (для определения угла входа частиц в модуль с помощью камер) -газ смесь камер Ar + 27%°iso- $C_4H_{10} + 2\%$ °C₃ $H_8O_2 + 0.3\%$ °CF₃Br

относящиеся к трём модулям

11

MWPC2-MWPC4

Наименование

MWPC5

6. Тестовый пучок SPS-ускорителя (3/4). Разрешение на электронах.

(+)Аппроксимация одной функцией трёх наборов данных из 3-х модулей
(точки G, J, K) дает значение стохастического члена $a = (21.4 \pm 0.2)\% \cdot \Gamma \Rightarrow B^{1/2}$
и постоянного члена $b = (0.3 \pm 0.2)\%$ в сравнении со значениями из
моделирования $a_{MC} = (21.7 \pm 0.1)\% \cdot \Gamma \Rightarrow B^{1/2}$ и $b_{MC} = (0.0 \pm 0.2)\%$.13

А.Н. Шалюгин ЛЯП

a (%)

√**Е**(ГэВ)́

 $\sigma(E)$

6. Тестовый пучок SPS-ускорителя (4/4). Разрешение на пионах.

моделирования GCALOR $a = (65.6 \pm 0.7)\% \cdot \Gamma \Rightarrow B^{1/2}$ и $b = (4.9 \pm 0.1)\%$.

А.Н. Шалюгин ЛЯП

14

7. Радиационная стойкость системы н/в питания (1/2). Критерий.

POS.:	WORST LOCATION			BEST LOCATION				
	R	Z	SRL _{NIEL}	SRL _{TID}	R	Z	SRL _{NIEL}	SRL _{TID}
DETECTOR	(cm)	(cm)	fast neutrons	Gy year-1	(cm)	(cm)	fast neutrons	Gy year-1
			cm ⁻² ·year ⁻¹				cm ⁻² ·year ⁻¹	
LAR EMB	300	320	5.6E +11	2.0E +01	300	655	4.0E +10	2.8E +00
LAR HEC	210	450	1.3E +12	1.7E +01	300	655	4.0E +10	2.8E +00
FCAL	60	613	1.8E +13	2.3E +02	300	655	4.0E +10	2.8E +00
TILE LB	397	10	6.0E +09	1.0E -01	411	130	9.8E +09	1.3E -01
TILE LE	397	340	3.3E +10	2.2E -01	411	460	4.6E +09	5.9E -02
MDT barrel	690	295	1.3E +10	5.6E -01	1030	1235	4.0E +09	1.2E -01
MDT end-cap	188	725	2.9E +11	2.8E +00	1183	2400	1.7E +09	1.4E -01
CSC	89	725	1.8E +12	1.1E +01	197	690	2.4E +11	3.1E +00
RPC	680	290	9.7E +09	5.6E -01	1020	1235	4.1E +09	2.0E -01
TGC Trigger	172	1280	2.0E +10	6.2E -01	1200	1437	3.6E +09	2.1E -01
TGS 2 nd coord.	200	690	2.2E +11	3.1E +00	600	690	1.7E +10	5.1E -01

	Описание		нейтроны н см ⁻²
		RTC _{TID}	RTC _{NIEL}
SRL _i	Промоделированный уровень излучения за 10 лет работы установки ATLAS на LHC	2.2	3.3 10 ¹¹
SFsim _i	Фактор безопасности, учитывающий неопределённости в моделировании уровней излучения	3.5	5
SFlrd _i	Фактор безопасности, учитывающий неопределённость от скорости набора излучения	1.5	1.5
SFlot _i	Фактор безопасности, учитывающий технолог. различия при производстве купленных компонентов между собой	2	2
RTC _i	Критерий радиационной стойкости за 10 лет работы LHC	23.1	4.95 10 ¹²

Критерий радиационной стойкости. Методика RHAWG-группы. *RTC_i=10·SRL_i·SFsim_i·SFlrd_i·SFlot_i(i = TID,NIEL)*

ELMB	
8.0 10 ¹²	LHC 491
нейтронов	1 МГреі
см ⁻²	нейт

LHC 4913, LHC 7913 1 МГрей и 1.9 10¹⁵ нейтрон см⁻²

QLchip

7. Радиационная стойкость системы н/в питания (2/2).

Тип: радиационно стойкая, однократно программируемая ASIC. Логика: TTL (лог. «0»: ниже 0.8 В, лог. «1»: выше 2.4 В). Производитель: Quick Logic Corp., США.

Он-лайн тест электрических свойств: ток потребления. Он-лайн тест архитектуры: частота ошибок.

(11.1±2.5) 10¹² нейтрон см⁻² и (381±52) Грей при токе 63±6 мА

(57±3) 10¹² нейтрон см⁻² и (1250±450) Грей

8. Основные результаты работы отражены в выводах (1/2).

1. Создана физическая установка на канале №3 реактора ИБР-2 ЛНФ ОИЯИ, включающая радиационно стойкую ионизационную камеру с *α*-источником, электронный тракт регистрации и систему сбора данных, для проведения исследований загрязнения кислородом жидкого аргона материалами и электронными компонентами жидкоаргоновых калориметров (HEC, EMEC, FCAL) в сильных радиационных полях (суммарно получены *γ*-доза ~1 МГрей и поток ~10¹⁷ нейтронов см⁻²).

2. Показана необходимость исключения печатных плат из материала PREPREG из жидкоаргоновых калориметров из-за загрязнения кислородом жидкого аргона на уровне ~4 ppm при дозе γ -излучения 96кГр и интегральном потоке 1.0 10¹⁶ нейтрон см⁻² и возможность использования остальных материалов и электронных компонентов в жидкоаргоновых калориметрах (HEC, EMEC, FCAL).

3. На созданной ионизационной камере экспериментально получены параметры функции аппроксимации зарядовой кривой ионизации жидкого аргона от α -источника в рамках современной интерпретации «бокс»-модели: $a = (720.6 \pm 5.6) \ \kappa B/cm$, $b = (0.083 \pm 0.004) \ cm/\kappa B$, $k = (0.48 \pm 0.01)$.

8. Основные результаты работы отражены в выводах (2/2).

4. Определена радиационная стойкость системы контроля и управления низковольтным питанием НЕС-калориметра, состоящей из следующих элементов: QL- контроллера, ELMB-интерфейса и регуляторов напряжений положительной и отрицательной полярности, которая составляет (381±52) Грей по дозе ионизирующего излучения и (11.1±2.5) 10¹² нейтронов см⁻² по потоку неионизирующего излучения до 20 МэВ. Эти величины удовлетворяют критериям радиационной стойкости.

5. Создана трековая часть установки для тестирования модулей НЕС-калориметра и проведения комбинированных тестов с модулями EMEC и FCAL на базе пучковых двухкоординатных пропорциональных камер (8 плоскостей) на тестовом пучке SPS-ускорителя (CERN).

6. Проведена проверка 33-ти передних и задних модулей НЕС-калориметра на тестовом пучке SPSускорителя (CERN). Получены значения стохастического члена *a* и постоянного члена *b* энергетического разрешения для электронов $a = (21.4 \pm 0.2)\% \cdot \Gamma \Rightarrow B^{1/2}$ и $b = (0.3 \pm 0.2)\%$, а также заряженных пионов $a = (70.8 \pm 1.5)\% \cdot \Gamma \Rightarrow B^{1/2}$ и $b = (5.9 \pm 0.1)\%$.

БЛАГОДАРНОСТИ

Автор глубоко благодарен своему научному руководителю д.ф.-м.н. В.В. Глаголеву за научное руководство, внимание к работе, ценные советы и постоянную поддержку.

Хочу выразить глубокую признательность Первому руководителю темы ATLAS в ОИЯИ д.ф.-м.н. Н.А. Русакович за политическую и финансовую поддержку.

Также хочу выразить особую признательность руководящему составу группы жидкоаргонового калориметра в ОИЯИ – к.ф.-м.н. В.В. Кухтину, к.ф.-м.н. А.П. Чеплакову, к.ф.-м.н. М.Ю. Казаринову, к.т.н. Ю.А. Усову,

создателям пропорциональных камер установки ГИПЕРОН – к.ф.-м.н. А.А. Фещенко, к.ф.-м.н. Ю.И. Давыдову, к.ф.-м.н. И.Е. Чирикову-Зорину,

соучастникам сборки модулей – А.Б. Лазареву, С.Н. Шилову, С.И. Какурину,

соучастникам радиационных тестов на реакторе ИБР-2 – к.т.н. Е.А. Ладыгину, Г.А. Ярыгину, С.М. Голубых за неоценимую помощь и неоднократные полезные обсуждения.

А.Н. Шалюгин ЛЯП

22/05/2024 Семинар ЛЯП

Список публикаций

- 1) D.M. Gingrich, ..., A. Shalyugin et al., Construction, assembly and testing of the ATLAS hadronic end-cap calorimeter, Journal of Instrumentation, 2007-2-P05005 33pp.
- 2) C. Leroy, ..., A. Shalyugin et al., Liquid argon pollution tests of the ATLAS detector materials at the IBR-2 reactor in Dubna, Part. Nucl. Lett., 2000 №5(102) p.5-19.
- 3) C. Leroy, ..., A. Shalyugin et al., Irradiation tests of ATLAS liquid argon forward calorimeter (FCAL) electronics components, ATL-LARG-2002-003, CERN, Geneva, 19pp.
- 4) C. Leroy, ..., A. Shalyugin et al., Radiation hardness studies of components of the ATLAS Forward and Hadronic End Cap calorimeters at Dubna, 8-th International Conference on Calorimetry in High Energy Physics (CALOR Lisbon 1999), World Scientific, Singapore, 2000, p.653-660.
- 5) C. Leroy, ..., A. Shalyugin et al., Liquid argon pollution tests of ATLAS detector materials at the IBR-2 reactor in Dubna, 7-th International Conference on Advanced Technology and Particle Physics (ICATPP Como 2001), World Scientific, New Jersey, 2002, p.800-805.
- 6) C. Leroy, ..., A. Shalyugin et al., Irradiation tests of readout chain components of the ATLAS liquid argon calorimeters, Part. Nucl. Lett., 2000 №5(102) p.20-24.
- 7) B. Dowler, ..., A. Shalyugin et al., Performance of the ATLAS hadronic end-cap calorimeter in beam tests, Nucl. Instrum. Meth. A482 (2002), p.94-124.
- 8) C. Cojocaru, ..., A. Shalyugin et al. Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region 1.6<|η|<1.8 in beam test, Nucl. Instrum. Meth. A531 (2004), p.481-514.</p>
- 9) J. Pinfold, ..., A. Shalyugin et al., Performance of ATLAS liquid argon endcap calorimeter in the pseudorapidity region 2.5<| η |<4.0 in beam tests, Nucl. Inst. and Method A593 (2008), p.324-342.</p>
- J. Pinfold, ..., A. Shalyugin et al., Evaluation of the local hadronic calibration with combined beam-test data for the endcap and forward calorimeters of ATLAS in the pseudorapidity region 2.5
 η |<4.0 in beam tests, Nucl. Inst. and Method A693 (2012), p.74-97.
- 11) Ю.И. Давыдов,...А.Н. Шалюгин и др., Трековая система модернизированного спектрометра «Гиперон». Сообщение ОИЯИ Р13-94-411, Дубна, 1994, 13с.
- 12) N.J. Buchanan, ..., A. Shalyugin et al., Radiation qualification of the front-end electronics for the readout of the ATLAS liquid argon calorimeters, Journal of Instrumentation, 2008-3-P10005 43pp.
- 13) J. Ban,..., A. Shalyugin et al. Radiation hardness tests of GaAs amplifiers for liquid argon calorimetry. JINR-E13-95-222, MPI-PHE-95-08 May 1995, 12pp.
- 14) A. Cheplakov, ..., K. Jakobs, ..., A. Shalyugin et al. Radiation hardness of GaAs preamplifiers for liquid argon calorimetry at LHC, JINR-E13-96-358, MPI-PHE-96-15 Nov 1996, 13pp.
- 15) J. Ban, ..., A. Shalyugin et al., Radiation hardness tests of GaAs amplifiers operated in liquid argon in the ATLAS calorimeter, Nucl. Inst. and Method A594 (2008), p.389-394.

СПАСИБО ЗА ВНИМАНИЕ !

АРХИВ

2. НЕС-калориметр.

S

ത്

R2030.00

Параметры	НЕС1 (передний)	НЕС2 (задний)
Количество медных плит (поглотитель)	25	17
Толщина первой медной плиты в модуле	12.5 мм	25.0 мм
Толщина стандартной медной плиты в модуле	25.0 мм	50.0 мм
Вес стандартной медной плиты	90 кг	180 кг
Вес модуля	2103 кг	2811 кг
Размер большого зазора между плитами	8.500 мм	8.500 мм
Размер зазора между электродами (gap)	1.969 или 1.954мм	1.969 или 1.954мм
Толщина коврика из Honeycomb-материала	1.816 мм	1.816 мм
Общая толщина ROB- и EST-электродов	0.625 или 0.685мм	0.625 или 0.685мм
Количество сегментов считывания	2	2
Кол-во больших зазоров считывания в сегментах	8+16 = 24	8+8 = 16
Количество триггерных зон типа tower («башня»)	24+23 = 47	21+20 = 41
Количество плат предусилителей	3	2
Количество чипов предусилителей	42	28
Количество линий низковольтного питания	12	8
Количество распределительных плат калибровки	1	1
Количество линий калибровочных сигналов	28	16
Количество линий высоковольтного питания	4+4 = 8	4+4 = 8
Количество стягивающих шпилек в модуле	7	7
Диаметр стягивающих шпилек	12 мм	16 мм
Нагрузка на стягивающую шпильку	78 МПа	79 МПа
Нагрузка на стержень резьбы стягивающей	112 МПа	118 МПа
шпильки		
Внешний диаметр спейсеров для больших зазоров	17 мм	23 мм
(8.50мм)		23
Макс. нагрузка спейсера на медную плиту	138 МП а	138 MПа

2. НЕС-калориметр. Электроника: внутри и снаружи криостата.

PSB

HEC Cables

Box

3. Ионизация в жидком аргоне.

3. Ионизация в жидком аргоне. Время дрейфа.

Поправка времени дрейфа за счёт определение скорости дрейфа с учётом температуры и напряжённости электрического поля (добавление диффузии Калинина-Потребенникова к «бокс»-модели Томаса-Аймела):

$$v_{drift}^{model}(T, E) = \left(1 + P_1(T - T_0)\right) \left(P_3 E ln\left(1 + \frac{P_4}{E}\right) + P_5 E^{P_6}\right) + P_2(T - T_0)$$

 P_1 - P_6 – коэффициенты, T_0 =90.371 ⁰K (const), T=89.55 ⁰K.

T ₀	90.371 ⁰ K (const)
P ₁	- $0.01481 \pm 0.00095 \ ^{0}$ K ⁻¹
P ₂	- $0.0075 \pm 0.0028 \ ^{0}$ K ⁻¹
P ₃	0.141 ± 0.023 (см/кВ)
P ₄	12.4 ± 2.7 (кВ/см)
P ₅	1.627 ± 0.078 (кВ/см) ^{-Р6}
P ₆	0.317 ± 0.021

 $t_{drift} = rac{d_{HEC}}{v_{drift}^{model}} = 450$ нс при HV=1.8 кВ

A.M. Kalinin, Yu.K. Potrebennikov et al., Temperature and Electric Field Strength Dependence of Electron Drift Velocity in Liquid Argon, ATLAS Internal Note LARG-No-058, 1996, CERN, Geneva. W. Walkowiak, Drift Velocity of Free Electrons in Liquid Argon, ATL-LARG-99-008, 1999, CERN, Geneva.

4. Загрязнение кислородом жидкого аргона. Материалы и компоненты.

<u>Элементы НЕС-калориметра в жидком аргоне</u> при (1.3±0.2) 10¹⁶нейтрон МэВ⁻¹ см⁻², (107±11)кГрей:

- Нопеусоть-коврик, 2 листа: полиимидная смола
- EST-электрод, 1 лист: полиимид, углерод
- РАД-электрод, 1/2листа: полиимид, углерод, медь
- плата передней электроники: стеклотекстолит FR4
- 4 GaAs-чипа: золото, керамика, арсенид галлия
- панельки типа DIP-16: пластик чёрный
- кабели коаксиальные: медь, полиимидная изоляция
- кабели питания: медь, полиимидная изоляция
- ламель цепей калибровки «Strip Line»: медь, полиимид
- фурнитура (винты): пластик белый 234 см³
- кабельные стяжки (tefzel): пластик белый 5.4 см³
- скользящие трёхслойные контакты (permaglide) из композита: медь, олово, свинец (бронза) политетрафлуорэтилен (polytetrafluoreethylene) 7.0 см³ Элементы ЕМЕС-калориметра в жидком аргоне: при (1.0±0.1) 10¹⁶нейтрон МэВ⁻¹ см⁻², (96±10)кГрей:
 РЕЕК-волокно: пластик белый, диаметр 0.375мм,
- длина 75м 282 см³
- терморезисторы РТ-100, 5шт : платина 2.0 см³

<u>Элементы FCAL- калориметра в жидком аргоне</u> при (0.7±0.1) 10¹⁶нейтрон МэВ⁻¹ см⁻², (67±7)кГрей:

- электроды: стеклотекстолит типа PREPREG (ероху laminate) площадью 0.22 м², толщиной 1.5 мм 330 см³
- обожжённые слитки: вольфрам, магний 234 см³
- электроды (9 кусков): стеклотекстолит типа FR4 200 см³
- кабели сигнальные: полиамид (kapton-HPP), длина 30м
- одиночные соединители (2 типа, всего 173комплектов)
- плата электроники: стеклотекстолит типа FR4
- разъёмы, 2шт: типа D-SUB 100 см³

компоненты передней электроника 38 см³:

- смд-резисторы, 254 шт: металлокерамика
- смд-конденсаторы, 252 шт: металлокерамика -смд-трансформаторы, 47 шт: медь, пластик (корпус)
- электроника системы монитора загрязнения 13 см³:
- смд-резисторы -72 шт,
- смд-конденсаторы -75шт
- диски корпуса 6шт (пластик) и в/в конденсаторов: -5шт

6. Калибровка модулей от генератора. Получение аналитической функции ионизационного сигнала с АЦП (в мВ) и перевод её во входной ток (нА) (постоянная времени предварительного формирователя и формирователя).

Chain	Parameters	Values	Transfer function
component			
Generator	Delay time	$\tau_d = 350 \text{ ns}$	$\alpha + s\tau_d$
	Step fraction	$\alpha = 0.07$	$\overline{s(1+s\tau_d)}$
Cable1 (calibr.)	Attenuation	$\alpha_{\rm c} = 0.905$	$a_c(1+s\tau_{zc})$
	Zero	$\tau_{zc} = 18 \text{ ns}$	$(1 + s\tau_{oc})(1 + s\tau_{pc})$
	Pole 1	$\tau_{\rm oc} = 1.2 \text{ ns}$	с сол с рол
	Pole 2	$\tau_{\rm pc} = 21 \text{ ns}$	
Detector	Capacitance	$C_{\rm D} = 20-400$	-
		pF	
	Cable length	0.2-2m	-
	Drift time	$\tau_{\rm dr} = 450 \text{ ns}$	-
Preamplifier	Input	$R_a = 50 \Omega$	R_p
	impedance		$\frac{1}{(1+s\tau_a)(1+s\tau_{da})}$
	Integration	$\tau_{a} = 4-23 \text{ ns}$	(u/ uu
	Transimped.	$R_p = 0.75 \text{ k}\Omega$	
	Driver	$\tau_{da} = 4 \text{ ns}$	
Cable2 (signal)	Attenuation	$\alpha_{\rm s} = 0.965$	$a_{s}(1+s\tau_{zs})$
	Zero	$\tau_{zs} = 24.5 \text{ ns}$	$\frac{s(1+s\tau_{os})(1+s\tau_{ns})}{(1+s\tau_{ns})(1+s\tau_{ns})}$
	Pole 1	$\tau_{\rm os} = 1.2 \text{ ns}$	
	Pole 2	$\tau_{\rm ps} = 28.5 \ \rm ns$	
Preshaper	Gain	$G_{p} = 6.5$	$G_n(1+s\tau_{nz})$
	Zero	$\tau_{pz} = 0-20 \text{ ns}$	$\frac{1}{(1+s\tau_i)(1+s\tau_0)}$
	Pole 1	$\tau_i = 29 \text{ ns}$	
	Pole 2	$\tau_0 = 2.5 \text{ ns}$	
Shaper and	Gain	$G_{sd} = 9.2$	$G_{sd} \cdot 3.69s\tau_s$
Driver			$\frac{1}{(1+s\tau_{s})^{3}}$
	Time	$\tau_{\rm s} = 13.5 \text{ ns}$	
Cable3 (from	Pole 1	$\tau_{\rm df} = 2 \text{ ns}$	1
Driver to ADC)	Pole 2	$\tau_{ac} = 7 \text{ ns}$	$\frac{1}{(1 + s\tau_{df})(1 + s\tau_{df})}$

