
Status of some parts of the TPC for the MPD/NICA experiment

Aleksei Bazhazhin¹, S. Movchan¹, J. Lukstins¹, G. Mescheryakov¹, O. Fateev¹, V. Samsonov¹, S. Zaporozhets¹, V.F. Chepurnov¹, S. Vereschagin¹, A. Pilar¹, V. Zruev¹, A. Ribakov¹, I. Balaschov¹, A. Makarov¹, V.V. Chepurnov¹, V. Serduk¹, G. Cheremukhina¹, Y. Ghoniem¹, A. Fedotov^{1,3}, L. Kochenda², P. Kravtsov², Yu. Fedotova⁴, Ya. Galkin⁴, A. Litomin⁴, V. Tchekhovskiy⁴, I. Zur⁴, A. Haluza⁵, A. Kunts⁵, D. Lushachkin⁵, V. Senkevich⁵, M. Vasilenko⁵, S.N. Savitskiy⁶, S.S. Savitskiy⁷, Yu. Yuhno⁷

¹Veksler and Baldin Laboratory of High Energy Physics (VBLHEP), Joint Institute for Nuclear Research (JINR); ²Petersburg Nuclear Physics Institute NRC KI; ³Belarusian State University; ⁴Institute for Nuclear Problems Belarusian State University INP BSU; ⁵ArcoLab, Minsk, Belarus; ⁶Artmash, Minsk, Belarus; ⁷Kraina, Minsk, Belarus.

As part of the creation of a new accelerator complex NICA, a Multi-Purpose Detector (MPD) is being developed. The Time Projection Chamber (TPC) is used for charge particle tracking and particle identification. The TPC being a large but conceptually simple detector must be assembled with very high precision to reduce nonlinear systematic effects. High stability of the mechanical structure and uniformity of the drift E field, the stability of temperature, the drift gas purity and the gas gain uniformity have to be provided to get precise track reconstruction and energy-loss measurements. The TPC has a cylindrical body with a diameter of 2.8 m and length of 3.4 m and is placed in the magnet with solenoidal field of 0.5 T. The sensitive volume contains around 17.6 m3 of argon-methane mixture. The detector will register charged products of heavy ion collisions and provide registering events with a trigger rate up to 7 kHz.

