Topological defects in graphene and other 2D materials

Oleg Yazyev

Institute of Physics
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Switzerland

Outline

- Topological defects in graphene
- Experimental evidence
- Buckling transition of grain boundaries in graphene
- Electronic transport phenomena
- Electronic transport across periodic grain boundaries
- Dislocations as resonant scattering sources
- Valley filtering using periodic line defects in graphene
- Topological defects in MoS_{2} and other dichalcogenides
- Spin-orbit gap, spin- and valley-filtering, etc.

Further information

nature nanotechnology

FOCUS | REVIEW ARTICLE
PUBLISHED ONLINE: 17 AUGUST 2014|DOI: 10.1038/NNANO.2014.166

Polycrystalline graphene and other two-dimensional materials

Oleg V. Yazyev' ${ }^{1}$ and Yong P. Chen ${ }^{2}$

Graphene, a single atomic layer of graphitic carbon, has attracted intense attention because of its extraordinary properties that make it a suitable material for a wide range of technological applications. Large-area graphene films, which are necessary for industrial applications, are typically polycrystalline - that is, composed of single-crystalline grains of varying orientation joined by grain boundaries. Here, we present a review of the large body of research reported in the past few years on polycrystalline graphene. We discuss its growth and formation, the microscopic structure of grain boundaries and their relations to other types of topological defect such as dislocations. The Review further covers electronic transport, optical and mechanical properties pertaining to the characterizations of grain boundaries, and applications of polycrystalline graphene. We also discuss research, still in its infancy, performed on other two-dimensional materials such as transition metal dichalcogenides, and offer perspectives for future directions of research.

Topological defects

Dislocation

Topological invariant:
\vec{b} - Burgers vector

In graphene:
In 2D only edge dislocations
$(\vec{b} \perp \vec{\xi})$ are possible

Grain boundary

$$
\begin{aligned}
\theta & =\theta_{1}+\theta_{2}-\text { misoriention angle; } \\
\psi & =\left|\theta_{1}-\theta_{2}\right| \text { - tilt angle }
\end{aligned}
$$

In 2D only tilt grain boundaries are possible. More specifically, in graphene $\theta \in\left[0,60^{\circ}\right], \psi \in[0, \theta]$

Non-locality of topological disorder

Dislocations

vs. point defects

Disclinations in graphene

Volterra cut-and-glue construction

positive disclination

$$
s=60^{\circ}
$$

ideal graphene

negative disclination

$$
s=-60^{\circ}
$$

Seung \& Nelson, 1988

Dislocation = pair of disclinations

Dislocations in graphene

$(1,0)$ dislocation
$|\vec{b}|=\sqrt{3} d_{\mathrm{CC}}=2.46 \AA$

$(1,1)$ dislocation
$|\vec{b}|=3 d_{\mathrm{CC}}=4.23 \AA$

$(1,0)+(0,1)$ dislocation
$|\vec{b}|=3 d_{\mathrm{CC}}=4.23 \AA$

Large-angle symmetric grain boundaries in graphene

Frank's equations:

GB's along armchair direction:

$$
\theta=2 \arcsin \frac{\left|\vec{b}_{(1,0)}\right|}{2 d_{(1,0)}}
$$

LAGB I
$\theta=21.8^{\circ}$

GB's along zigzag direction:

$$
\theta=60^{\circ}-2 \arcsin \frac{\left|\vec{b}_{(1,1)}\right|}{2 d_{(1,1)}}
$$

$$
\begin{align*}
& \begin{array}{l}
\text { T } \\
\boldsymbol{\gamma} \\
\text { T } \\
\boldsymbol{\lambda} \\
\boldsymbol{T} \\
\boldsymbol{\gamma} \\
+(0,1)
\end{array} \tag{1,1}
\end{align*}
$$

$$
\theta=32.2^{\circ}
$$

Yazyev \& Louie, Phys. Rev. B 81, 195420 (2010)

Polycrystalline graphene and topological defects

Burgers vector misorientation angle
b

$$
\theta=\theta_{\mathrm{L}}+\theta_{\mathrm{R}}
$$

Yazyev \& Louie, Phys. Rev. B 81, 195420 (2010); also results by group of Yakobson

Grain boundary energetics (flat)

DFT-GGA results

Flat regime (bulk-like):
Read-Shockley equation
$\gamma(\theta)=\frac{\mu|\vec{b}|}{4 \pi(1-v)} \theta(A-\ln \theta)$
$A=1+\ln \left(\frac{|\vec{b}|}{2 \pi r_{0}}\right) \quad \mathrm{r}_{0}=1.2 \AA$

Yazyev \& Louie, Phys. Rev. B 81, 195420 (2010)

Grain boundary energetics (buckled)

DFT-GGA results

Flat regime (bulk-like):
Read-Shockley equation

$$
\begin{aligned}
& \gamma(\theta)=\frac{\mu|\vec{b}|}{4 \pi(1-v)} \theta(A-\ln \theta) \\
& A=1+\ln \left(\frac{|\vec{b}|}{2 \pi r_{0}}\right) \quad \mathrm{r}_{0}=1.2 \AA
\end{aligned}
$$

Buckled regime (membrane) Finite dislocation energy

$$
\gamma(\theta)=\frac{E_{f} \theta}{|\vec{b}|} \quad E_{\mathrm{f}}=7.5 \mathrm{eV}
$$

Yazyev \& Louie, Phys. Rev. B 81, 195420 (2010)

Experimental evidence

Epitaxial graphene grown on Cu substrates

Reproduced from Huang et al., Nature 469, 389 (2011).
Almost simultaneously reported in
Kim et al., ACS Nano 5, 2142 (2011), An et al., ACS Nano 5, 2433 (2011), followed by many others.

Ordered GBs in graphene

Annealed CVD graphene

B. Yang et al., JACS 136, 12041 (2014)

Experimental evidence

Large-angle GB in epitaxial graphene on $\operatorname{SiC}(000-1)$.

Experiments: Vincent Repain (Paris VII); theory: Yazyev group (EPFL)

Buckling transition of GBs in graphene

Y. Tison et al., Nano Lett. 14, 6382 (2014)

Buckling transition of GBs in graphene
Buckling transition $\theta_{c}=19^{\circ} \pm 1^{\circ}$ (and symmetrically $\theta_{c}=41^{\circ} \pm 1^{\circ}$)

Y. Tison et al., Nano Lett. 14, 6382 (2014)
I. Transport across periodic grain boundaries in graphene:

Momentum conservation

Electronic transport in polycrystalline graphene

$$
8^{8} ⿻^{2}
$$

Zone-folding approach

$n-m=3 q$

$n-m \neq 3 q$

Yazyev \& Louie, Nature Mater. 9, 806 (2010)

Two distinct transport behaviors of periodic GBs

Transmission allowed:

\square II

$$
\begin{array}{lll}
n_{\mathrm{L}}-m_{\mathrm{L}}=3 q & n_{\mathrm{L}}-m_{\mathrm{L}} \neq 3 q & n_{\mathrm{L}}-m_{\mathrm{L}}=3 q \\
n_{\mathrm{R}}-m_{\mathrm{R}}=3 q & n_{\mathrm{R}}-m_{\mathrm{R}} \neq 3 q & n_{\mathrm{R}}-m_{\mathrm{R}} \neq 3 q
\end{array} \text { or } \begin{gathered}
n_{\mathrm{L}}-m_{\mathrm{L}} \neq 3 q \\
n_{\mathrm{R}}-m_{\mathrm{R}}=3 q
\end{gathered}
$$

Transport gap: $\quad E_{\mathrm{g}}=0$

$$
E_{\mathrm{g}}=0
$$

$$
E_{\mathrm{g}}=\hbar v_{\mathrm{F}} \frac{2 \pi}{3 d}
$$

$$
\approx \frac{1.38}{d[\mathrm{~nm}]}[\mathrm{eV}]
$$

Non-equilibrium Green's function results (ballistic regime)

$$
\text { Transmission: } \quad T=\operatorname{Tr}\left(\Gamma_{\mathrm{L}} G_{\mathrm{S}}^{\dagger} \Gamma_{\mathrm{R}} G_{\mathrm{S}}\right)
$$

Green's function (scatt. region):

$$
G_{\mathrm{S}}=\left(E^{+} I-\mathrm{H}_{\mathrm{S}}-\Sigma_{\mathrm{L}}-\Sigma_{R}\right)^{-1}
$$

Coupling matrices (contacts):

$$
\Gamma_{\mathrm{L}(\mathbb{R})}=i\left(\Sigma_{\mathrm{L}(\mathbb{R})}-\Sigma_{\mathrm{L}(\mathbb{R})}^{\dagger}\right)
$$

Class I $(2,1) \mid(2,1)$
$\Theta=21.8^{\circ} \quad$ (symmetric)

- highly transparent
- valleys separated in $\mathrm{k}_{\|}$

Class II (5,0)|(3,3)
$\Theta=30.0^{\circ} \quad$ (asymmetric)

- large transport gap (1 eV)
- asymmetric, with misfit

Yazyev \& Louie, Nature Mater. 9, 806 (2010)

Non-equilibrium Green's function results (ballistic regime)
Transmission: $\quad T=\operatorname{Tr}\left(\Gamma_{\mathrm{L}} G_{\mathrm{S}}^{\dagger} \Gamma_{\mathrm{R}} G_{\mathrm{S}}\right)$
Green's function (scatt. region):

$$
G_{\mathrm{S}}=\left(E^{+} I-\mathrm{H}_{\mathrm{S}}-\Sigma_{\mathrm{L}}-\Sigma_{R}\right)^{-1}
$$

Coupling matrices (contacts):

$$
\Gamma_{\mathrm{L}(\mathbb{R})}=i\left(\Sigma_{\mathrm{L}(\mathbb{R})}-\Sigma_{\mathrm{L}(\mathbb{R})}^{\dagger}\right)
$$

Class I $(2,1) \mid(2,1)$
$\Theta=21.8^{\circ} \quad$ (symmetric)

- highly transparent
- valleys separated in $\mathrm{k}_{\|}$ (valley filtering)

Class II $(5,0) \mid(3,3)$
$\Theta=30.0^{\circ} \quad$ (asymmetric)

- large transport gap (1 eV)
- asymmetric, with misfit

Yazyev \& Louie, Nature Mater. 9, 806 (2010)

II. Dislocations as resonant scattering centers

Transport anomaly at low energies

Transmission at $\mathrm{E}=0$ decreases (!) as separation between dislocations increases.
Dislocations cannot be described in terms of scattering cross-sections, topological aspects are important

Topological aspects in electronic transport

Gauge field associated with dislocations

$$
\varphi=\oint \mathbf{A} d \mathbf{r}=\mathbf{k} \cdot \mathbf{b}
$$

Iordanskii \& Koshelev, Sov. Phys. JETP 63, 820 (1986)
$\mathbf{b}=(1,0)$ dislocations (or any $n-m \neq 3 q$) are non-trivial $\left(\mathbf{k} \cdot \mathbf{b}=\frac{2 \pi}{3}\right.$)
$\mathbf{b}=(1,1)$ dislocations (or any $n-m=3 q$) are trivial $(\mathbf{k} \cdot \mathbf{b}=0$)
Analogy with Aharonov-Bohm effect (for the $1^{\text {st }}$ case)

$$
\Phi=1 / 3 \Phi_{0}\left(-1 / 3 \Phi_{0}\right) \text { for } \tau=+1(\tau=-1)
$$

Give rise to zero-energy modes

$$
\operatorname{LDOS}(r, E) \propto r^{-4 / 3}|E|^{-1 / 3}
$$

Hybridization of zero-modes

Resonant backscattering on zero-energy states

Gargiulo \& Yazyev, Nano Lett. 14, 250 (2014)

Topological aspects: numerical results

$\mathbf{b}=(1,0)$ dislocations:

- resonant scattering sources at $E=0$
- anomalous dependence of conductance on dislocation density

$\mathbf{b}=(1,1)$ dislocations:
- small scattering crosssections
- behave like point defects (topologically trivial)

Gargiulo \& Yazyev, Nano Lett. 14, 250 (2014)

III. Valley filtering with line defects

Valley filtering with 5-5-8 line defect

Gunlycke \& White, PRL 106, 136806 (2011)

Eigenstates in graphene:

$$
\left|\Phi_{\tau}\right\rangle=\frac{1}{\sqrt{2}}\left(|A\rangle+i e^{-i \tau \theta}|B\rangle\right)
$$

In the symmetry-adapted basis:

$$
\left|\Phi_{\tau}\right\rangle=\frac{1+i e^{-i \tau \theta}}{2}|+\rangle+\frac{1-i e^{-i \tau \theta}}{2}|-\rangle
$$

where

Transmission:

$$
T_{\tau}=\left|\left\langle+\mid \Phi_{\tau}\right\rangle\right|^{2}=\frac{1}{2}(1+\tau \sin \theta)
$$

Valley polarization

$$
P_{\tau}=\frac{T_{\tau}-T_{-\tau}}{T_{\tau}+T_{-\tau}}=\tau \sin \theta
$$

In general, all periodic defects with $k_{\| \mid}(K) \neq k_{\| \mid}(K)$ (e.g. class-Ib GBs) are expected to show valley filtering, because

Why bother? Valleytronics!

$$
T_{\tau}(\theta)=T\left(k_{\|}\right)=T\left(-k_{\|}\right)=T_{-\tau}(-\theta) \neq T_{-\tau}(\theta)
$$

Rycerz, Tworzydlo \& Beenakker, Nature Phys. 3, 172 (2007)

Controlled production of 5-5-8 line defect

Controlled production in TEM microscope + electric current:

- Starts at the edge of a hole and proceeds via carbon atom removal;
- Combination of knock-on damage and electromigration (?)

\%

mobile end

$$
\mathrm{E}_{\text {term }}=18 \mathrm{eV}
$$

$$
\begin{aligned}
& \text { pinned end } \\
& \mathrm{E}_{\text {term }}=15 \mathrm{eV}
\end{aligned}
$$

Growth dynamics:

Experiments: Zettl group (UC Berkeley)

First-principles results

Valley filtering from first-principles

electrons

Strong energy dependence of valley polarization on chargecarrier energy
holes

Calculations: Yazyev group (EPFL) Chen et al., Phys. Rev. B 89, 121407 (2014)

IV. Valley/spin filtering in TMDs

2D transition metal dichalcogenides (TMDs)

Manzeli, Ovchinnikov, Pasquier, Yazyev \& Kis, Nature Review Materials 2, 17033 (2017)

Graphene vs. TMDs: atomic structure
 graphene
 monolayer $\mathbf{2 H ~ M o S} 2$

- hexagonal symmetry
- equivalent sublattices
- centrosymmetric

- hexagonal symmetry
- inequivalent "sublattices"
- non-centrosymmetric

Graphene vs. TMDs: electronic structure graphene
 monolayer 2 $\mathrm{H} \mathrm{MoS}_{2}$

- $\operatorname{semi}-m e t a l\left(E_{\mathrm{g}}=\sim 0 \mathrm{eV}\right)$
- 2 valleys (points K and K)
- very weak spin-orbit coupling

$$
\left(\Delta_{\mathrm{SO}}=2.4 \times 10^{-5} \mathrm{eV}\right)
$$

- semiconductor $\left(E_{\mathrm{g}}=1.9 \mathrm{eV}, \mathrm{DFT}\right)$
- 2 valleys (points K and K)
- strong spin-orbit coupling ($\Delta_{\mathrm{SO}}=0.15 \mathrm{eV}$ for MoS_{2}, $\Delta_{\text {SO }}=0.46 \mathrm{eV}$ for WSe_{2})
Zhu et al, Phys. Rev. B 84, 153402 (2011)

Polycrystalline TMDCs

Aperture filtered DF-TEM images of CVD grown MoS_{2}

van der Zande et al., Nature Mater. 12, 554 (2013); Najmaei et al., Nature Mater. 12, 754 (2013).

- Highly faceted grain boundaries
- Many different structures possible
- Abundance of inversion domain boundaries

Zhou et al., Nano Lett. 13, 2615 (2013);
Lin et al., Nature Nanotech. 9, 391 (2014) Lehtinen et al, ACS Nano 9, 3274 (2015).

Possible transport scenarios

Band structure projected on lattice vector direction

Trivial scenario:
valley/spin filtering

Inversion domain boundary:
valley/spin filtering

+ transport gap

Pulkin \& Yazyev, PRB 93, 041419(R) (2016)

Trivial scenario

Ordered sulfur vacancy lines

Komsa et al., PRB 88, 035301 (2013)

Transmission:

Valley/spin polarization:

- nearly 100% spin polarization and large conductances of holes;
- contrasting transmissions asymmetry of electrons and holes

Pulkin \& Yazyev, PRB 93, 041419(R) (2016)

Inversion domain boundaries

IDB2

$0_{0}^{0} 0_{0}^{0} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0^{\circ} 0$

Transmission:

Valley/spin polarization:

- spin-orbit transport gap of G-K offset magnitude
- contrasting transmissions asymmetry of electrons and holes

Pulkin \& Yazyev, PRB 93, 041419(R) (2016)

Acknowledgements

My group

Fernando Gargiulo and

Artem Pulkin

Gabriel Autès

Steve Louie, Alex Zettl (UC Berkeley), Jérôme Lagoute, Vincent Repain (Paris VII), Andras Kis (EPFL), O. Lehtinen (Ulm) H.-P. Komsa, A. Krasheninnikov (Helsinki)

IFN TNF

Swiss National Science foundation

European Research Council

