Программно-алгоритмический комплекс для

реконструкции траекторий заряженных частиц

И

идентификация ионов

в эксперименте SRC на установке BM@N

Ленивенко Василиса Викторовна

Специальность 1.2.2

Научные руководители: к.ф.-м.н. Пальчик Владимир Владимирович к.ф.-м.н. Пацюк Мария Александровна

Актуальность исследования

NICA — новый ускорительный комплекс уровня мегасайенс

BM@N (Baryonic Matter at Nuclotron) – первый действующий эксперимент комплекса NICA.

 SRC (Short Range Correlations) –

 эксперимент на установке BM@N для

 исследования
 свойств

 короткодействующих двухнуклонных

 корреляций
 (КДК) в ядре с

 импульсом 4 GeV/c/n

Модель Короткодействующих Двухнуклонных Корреляций (КДК)

- Нуклоны в КДК имеют большой абсолютный импульс и малый импульс центра масс пары относительно импульса Ферми
- КДК нуклоны занимают высокоимпульсную часть однонуклонного распределение импульсов в ядре
- Большинство КДК протон-нейтронные
- КДК важны, например, для понимания плотной барионной материи и нейтронных звезд

SRC на BM@N - первое исследование КДК в обратной кинематике

Nature 20NaturePhys. Rev. Lett. '20Phys.Phys. Lett. B '20Phys.Phys. Lett. B '21Phys.

<u>Nature '18</u> Phys. Rev. Lett. '18 Phys. Lett. B '18a Phys. Lett. B '18b

<u>2023:</u>

Phys. Rev. C 107, L061301 (2023) Nucl. Instrum. Meth. A 1052, 168238 (2023) M. Patsyuk, J. Kahlbow, G. Laskaris, M. Duer, V. Lenivenko, et al., Unperturbed inverse kinematics nucleon knockout measurements with a carbon beam,

Nature Physics, 17, 693 (2021)

Экспериментальная установка SRC на BM@N

Конфигурация детекторов в 2018г

Актуальность исследования

В физическом анализе экспериментальных данных ключевую роль играет реконструкция треков заряженных частиц.

В основе реконструкции треков до магнита лежат данные, полученные с помощью системы многопроволочных пропорциональных камер (MWPC – MultiWire Proportional Chambers) и системы новых кремниевых детекторов (SiDet -Silicon Detectors), располагающихся до магнита.

Для получения результатов требовалось:

- разработать алгоритмы и реализовать комплексы программ, включающие в себя восстановление траекторий заряженных частиц, начиная от формирования хитов и до полной реконструкции треков частиц в этих детекторах.
- идентифицировать ионы конечного состояния

Идентификация ионов конечного состояния ¹²C(p,2p)¹¹B, ¹²C(p,2p)¹⁰Be, ¹²C(p,2p)¹⁰B на реальных данных

Основные цели и задачи

Цель работы включает в себя разработку методов и комплексов программ реконструкции траекторий заряженных частиц в системе камер *MWPC* и детекторов *SiDet*, а также идентификацию ионов конечного состояния, что является неотъемлемой частью численного анализа данных эксперимента *SRC* на установке *BM@N* 2018 года.

Для достижения поставленной цели требовалось решить следующие основные задачи:

- **разработка алгоритмов** реконструкции траекторий заряженных частиц для системы камер *MWPC* и детекторов *SiDet* для эксперимента *SRC* на установке *BM@N*;
- обеспечение возможности работы с моделированными данными для данных детекторов, а также тестирование и проверка алгоритмов реконструкции треков в системах камер *MWPC* и детекторов *SiDet* на экспериментальных и моделированных данных;
- разработка программного обеспечения *BmnRoot* эксперимента BM@N и оформление комплекса программ в виде классов восстановления траекторий заряженных частиц, а также моделирование отклика в камерах *MWPC* и детекторах *SiDet*, т.е. унификация реконструкции на экспериментальных и моделированных данных;
- разработка метода идентификации ядер в конечном состоянии для эксперимента SRC на установке BM@N по прямым отрезкам траекторий ядер до и после анализирующего магнита с применением алгоритмов, направленных на минимизацию многомерного функционала, основанных на программе FUMILI.

Этапы реконструкции треков в SiDet и MWPC и соответствующие им классы, входящие в BmnRoot

Разработанный комплекс программ реализован в виде классов на языке С++ и отмечен цветом

- Каждая камера имеет 6 плоскостей: две X, две U и две V, с углами $0^{\circ},\pm 60^{\circ}$.
- Шаг между проволоками dw = 2.5 мм
- Координатное разрешение $\sigma_i = \frac{dw}{\sqrt{12}} = 0.72$ мм
- Ko отношением:

 $\frac{\overline{3}}{2}$, $V = \frac{(x-y)\sqrt{3}}{2}$, y = (l

ординаты связаны со
$$(U+V)/\sqrt{3}, U = \frac{(x+y)\sqrt{3}}{2},$$

MWPC

$$\downarrow^{Y}$$
, Z
 \downarrow^{I} , Z

V + U - X = 0

Между камерами в паре ~ 1м

Проблема: большое количество сработавших проволок (шумов), кроме проволок, сработавших от реальных частиц

Э Разработаны разные способы поиска хитов до и после мишени в зависимости от времени прихода сигнала на проволоки

Разное количество частиц до и после мишени

Run 3338, H2 target

Два алгоритма поиска кластеров в МWPC до и после мишени

Камеры после мишени

Цель: реконструкция нескольких треков

Координата кластера определяется временным локальным минимумом

- Цель: реконструкция одного трека (ион углерода)
- 1. Поиск сигнала с проволоки с самым меньшим временем
- 2. Поиск проволок в диапазоне $2^*\Delta t$ (Δt = временной шаг = 8 нс)
- 3. Объединение соседних сработавших проволок в один кластер

Алгоритм реконструкции треков в MWPC

1. Чтение сигналов с проволок и объединение сигналов в кластер. Кластер – объединение рядом сработавших проволок.

Хит – координата кластера на плоскостях X, U, V.

2. Создание кандидатов в трек-сегменты (N = 6,5,4 хитов) min N = 4.

2.1 Набор в кандидаты используя уравнение: $|u_i + v_i - x_i| < 3^* dw$ разными комбинациями.

2.2 Вычисление параметров сегментов с помощью МНК $\sum \frac{d_i^2}{\sigma^2} \rightarrow min$.

где d_i - разность между измеренной и аппроксимированной координатой в i-й плоскости.

2.3 Выбор лучшего сегмента по χ^2 -критерию: $\frac{1}{N-4}\sum \frac{d_i^2}{\sigma_i^2}$; ($\frac{1}{N}\sum \frac{d_i^2}{\sigma_i^2}$ для N=4).

2.4 Проверка экстраполированного трека на попадание в мишень.

3. Сопоставление сегментов между разными камерами в плоскости между ними с _ помощью критерия: $\chi_m^2 = \frac{dx^2}{\sigma_x^2} + \frac{dy^2}{\sigma_y^2}$; где dx, dy – разницы между координатами – проекций параметров трек-сегментов в среднюю плоскость между камерами, а σ_i – ширины их распределения.

4. Аппроксимация результирующего трека по хитам в двух камерах (min N = 8, max N= 12).

Эффективность восстановления хитов на плоскость в МWPC

экспериментальные данные (SRC 2018г)

Run 3430 без мишени

$$\frac{\sum_{i}^{Ntracks}(1, if hit on plane)}{N_{track-segments}}$$

if was hit per track in plane (0 *or* 1)?

track - segments(1)

Эффективность восстановления треков в МWPC относительно другой дет. системы

экспериментальные данные (SRC 2018г)

(1)

SiDet

- Каждая станция имеет: прямые X стрипы с шагом d = 95 μm, наклонные X'(2.5°) стрипы, d = 103 μm
- С каждого сработавшего стрипа считывается амплитуда сигнала A_i.
- Координаты связаны соотношением: Y = $\frac{X'-X}{tg2.5^{\circ}}$. Координатное разрешение $\sigma_{XX'} \sim 50 \ \mu\text{m}$; $\sigma_{Y} \sim 1 \ \text{mm}$.

<u>Проблема</u>:

- Станции были поставлены единственным возможным образом, расположение получилось неоптимальным по Z – координате (Z₁=-426, Z₂ =-430, Z₃=-314 [см]).
- Эффективность считывания по X'-координате несколько ниже, чем по X.
- ≻ Разработан новый алгоритм набора трек-кандидатов.

Double-Sided Silicon Detectors (DSSD)

² Алгоритм реконструкции треков в системе SiDet

 Чтение сигналов со стрипов и создание кластеров.
 Кластер – объединение соседних сработавших стрипов (Х или Х' слоя).

Хит — центр кластера, координата которого рассчитывается как центр тяжести: $CoG = \frac{\sum^{N} A_{i} * i}{\sum^{N} A_{i}}$, A_{i} — амплитуда измерения на *i*-м стрипе.

2. Кандидаты в треки отбираются 2 методами:

- стандартный метод 6 хитов (3 пары X+X')
- по оставшимся хитам методом, близким к слежению по треку:
 - ▶ 4 хита + хит Х/Х' (станция 2)
 - ▶ 4 хита + хит Х/Х' (станция 3)
 - > 2 хита(ст.3) + 2 хита (Х ст.1 + Х'ст.2)

² Алгоритм реконструкции треков в системе SiDet

3. Создание кандидатов в треки и выбор лучшего.

Вычисление параметров кандидата в треки (N = 6,5,4 хитов)

с помощью МНК
$$\sum \frac{d_i^2}{\sigma_i^2} \rightarrow min$$

Выбор лучшего кандидата по χ^2 -критерию: $\frac{1}{N-4}\sum \frac{d_i^2}{\sigma_i^2}$;

$$(rac{1}{N}\sumrac{d_i^2}{\sigma_i^2}$$
для N=4);

4. Проверка экстраполированного трека на попадание в мишень

2

Эффективность восстановления хитов/треков в SiDet относительно другой дет. системы

экспериментальные данные SRC 2018г

Процедура математического выравнивания

Уравнение прямой X(z) = Tx*Z + X0, Y(z) = Ty*Z + Y0

1.Выравнивание координат трек-сегментов

- Каждый трек-сегмент экстраполируется в среднюю плоскость между камерами Z_m.
- Разница между координатами X и Y рассчитываются для каждой возможной комбинации:

 $dX = X^{Ch0} - X^{Ch1}, dY = Y^{Ch0} - Y^{Ch1}$

- Корреляционные пики распределений *dX* и *dY* фитируются функцией Гаусса и извлекаются средние значения.
- Каждый трек-сегмент из первой камеры смещается на значения dX и dY, то есть корректируются его положения в векторе:

 $X^{Ch1} = X^{Ch0} - dX$ и $Y^{Ch1} = Y^{Ch0} - dY$.

2.Выравнивание углов трек-сегментов

Результат выравнивания систем детекторов друг относительно друга

Треки экстраполированы в Z_{target}

MWPC(Pair0) – SiDet matching

Алгоритм реконструкции Upstream-трека : MWPC(Pair1)+SiDet

1. Поиск соответствия Si-треков и MWPC(Pair1)-треков, минимальное расстояние в средней плоскости Z_m = -271 см с помощью критерия $\chi^2_{match} = \frac{dx^2}{\sigma_x^2} + \frac{dy^2}{\sigma_y^2} + \frac{dTx^2}{\sigma_{Tx}^2} + \frac{dTy^2}{\sigma_{Ty}^2}$; где d_x , d_y , и d_{Tx} , d_{Ty} - разницы между координатами и углами проекций параметров треков в средней плоскости, а σ_i – масштабные коэффициенты, соответствующие разбросу этих величин.

3

2. Сопоставление оставшихся Si-треков с сегментами MWPC с помощью критерия χ^2_{match} .

3. По оставшимся точкам в Si1/2 и трек-сегменту в MWPC (Ch2) ищутся сочетания из 4x хитов в SiDet и оставшимся после предыдущих этапов трек-сегментов MWPC(Ch2). Такие треки могут проходить по краям Si1/2 и Ch2, не попадая в Si3 и Ch3.

4. Аппроксимация по хитам из двух систем (Upstream track)

- Выбор лучшего трека по критерию $\chi^2 = \frac{1}{N-4} \sum \frac{d_i^2}{\sigma_i^2}$, N > 5
- Проверка экстраполированного трека на попадание в мишень.

Результат восстановления Upstream-треков (MWPC+SiDet) на экспериментальных данных (SRC 2018г)

4

Моделирование отклика детектора и эффективность реконструкции треков на данных моделирования

В каждой детектирующей плоскости MWPC или SiDet регистрируются точки вдоль генерированного трека.

MC true track – общее число генерированных треков, прошедших через детекторную систему; *MC reco track* – число реконструированных треков.

$$Efficiency = \frac{MC \ reco \ track}{MC \ true \ track}$$

Генератор/ Детектор	Pair1 (%)	SiDet (%)	Upstream (%)
lon [¹² C]	99.2	100.0	99.0
DCM-SMM*	96.4	97.4	96.0

Более низкая эффективность реконструкции с генератором DCM-SMM объясняется сложной топологией генерированных физических событий.

> *Dubna Cascade Model Statistical Multifragmentation Model

Сравнение реконструкции трек-сегментов данных моделирования и эксперимента

Entries

Mean

57318

-0.007711

Экспериментальные данные

Пространственное разрешение в камере MWPC Ch3

Стандартное отклонение (Sigma) распределения для МС и экспериментальных данных находятся в неплохом согласии.

Разницу в результатах можно объяснить:

- неэффективностью работы детекторов;
- большой множественностью ложных срабатываний (шумов) детектора на экспер. данных.
- идеальные условия на моделированных данных

Multi-Dimensional Fit

или поиск максимума функции правдоподобия методом линеаризации **И.Н. Силин**, ЛИТ ОИЯИ [I.N. Silin, CERN Program Library, D510, FUMILI, 1983]

Предположим, что *F* — известная **интересующая величина**, которая зависит от N наблюдаемых величин *x_j* = (x_{1j}, ..., x_{Nj}) в событии j. Параметризация для искомой величины:

 $F_{p}(\mathbf{x}_{j}) = \sum_{l=1}^{L} c_{l} f_{l}(\mathbf{x}_{j})$

где $f_l(x_j)$ - подгоняемые под измерения $F_{1j} \pm \sigma_{1j}$, ..., $F_{Nj} \pm \sigma_{Nj}$ в точках x_1 , ..., x_N функции, где c_l – коэффициенты, определяемые фитированием, такие что *S* минимально:

$$S = \sum_{j=1}^{M} (F_j - F_p(\boldsymbol{x}_j))^2 / \boldsymbol{\sigma}_j^2.$$

https://root.cern.ch/doc/master/classTMultiDimFit.html

MDF в нашем случае

*F*_p – искомое TX0_{mdf} = f₉ (X0, Y0, Z0, TY0, X1, Y1, Z1, TX1, TY1) или

 $P/Z_{mdf} = f_{10} (X0, Y0, Z0, TX0, TY0, X1, Y1, Z1, TX1, TY1)$

 x_j - от 1...10 — параметры трека в одном событии: до магнита (положение X0, Y0, Z0 и тангенсы углов TX0, TY0) и после магнита X1, Y1, Z1, TX1, TY1.

сl - искомые коэффициенты

 F_j - известные величины TX0_{mdf} и P/Z_{mdf} , полученные из моделирования

Моделирование для MDF

- Реальная геометрия спектрометра, вещество детекторов установки и карта магнитного поля включены в моделирование
- 10⁶ событий ¹²С в широком диапазоне (импульс, угол, координата) для перекрытия всего геометрического акцептанта спектрометра BM@N

Оценка импульсного разрешения пучка углерода

Идентификация частиц

MDF метод → P/Z вылетевшего иона
P – импульс трека иона
Информация о заряде иона:
со сцинтилляционных счетчиков → Z

Систематическая ошибка MDF определяется отношением BG/Integral

 $10\mathbf{B}$

Tracking efficiency 39.5 \pm 1.7 (stat) \pm 2.6 (sys)%

 28.6 ± 4.6

Статистическая ошибка эффективности трекинга определяется эффективностью идентификации заряда. Н

На этом слайде обзор решенных задач и методов заканчивается. 31

Импульс фрагмента ¹⁰В (КДК)

M. Patsyuk, J. Kahlbow, G. Laskaris, M. Duer, V. Lenivenko, et al., Unperturbed inverse kinematics nucleon knockout measurements with a carbon beam, Nature Physics, 17, 693 (2021)

Основные положения, выносимые на защиту

- Алгоритмы локальной и глобальной реконструкции заряженных частиц для систем многопроволочных пропорциональных камер и кремниевых детекторов в условиях неоптимального геометрического расположения и пониженной эффективности считывания *SiDet*, а также повышенной ионизации *MWPC*. Эффективность реконструкции для *MWPC* и *SiDet* или *Upstream* составила 98%.
- Методика идентификации ионов конечного состояния в исследуемых реакциях методом *MDF,* основанного на методе минимизации многомерного функционала для эксперимента *SRC* на установке *BM@N.*
- Комплекс программ в рамках *BmnRoot* в виде набора классов, реализующий разработанные алгоритмы с возможностью работы как с экспериментальными данными, так и с моделированием.
- Результаты проведенного на основе методов и комплексов программ численного исследования идентификации ионов конечного состояния эксперимента SRC на установке BM@N на данных, набранных в 2018 году.

Научная новизна

• С учетом особенностей установки (неоптимальное считывание части информации и расположение *SiDet* и повышенная ионизация в *MWPC*) эксперимента SRC на установке *BM@N* разработан алгоритм построения трек-сегментов для камер *MWPC* и алгоритм поиска треков в системе станций *SiDet* вдоль пучка.

• Разработан и внедрен алгоритм глобальной реконструкции траекторий заряженных частиц через две детекторные системы *MWPC* и *SiDet* перед магнитом для эксперимента *SRC* на установке *BM@N*.

• Впервые **проведена идентификация ядерных фрагментов** для эксперимента *SRC* на установке *BM@N*.

• С помощью разработанных алгоритмов успешно выполнен численный анализ данных, позволивший получить физически значимые результаты. В том числе, впервые напрямую измерена ширина импульсного распределения КДК-пары.

Научно-практическая значимость

- Разработанные алгоритмы реализованы в комплексах программ и внедрены в программное обеспечение эксперимента *BM@N*. Всего на текущий момент при помощи созданного программного обеспечения **обработано около 500 миллионов** экспериментальных событий.
- Улучшен отбор сигналов в *МWPC* с исключением ложных срабатываний с учетом временных отсчетов в условиях большой зашумленности на экспериментальных данных.
- Разработанные методы позволили проводить реконструкцию траекторий заряженных частиц с эффективностью 98% относительно системы сцинтилляционных счетчиков, а также оценить разрешение камер *MWPC* и детекторов *SiDet* и получить высокую точность импульсного разрешения спектрометра *BM@N* (1.46%).
- Разработанные алгоритмы являются универсальными и используются как для конфигурации эксперимента *SRC* на установке *BM@N*, так и для основной конфигурации эксперимента *BM@N*. Разработанные алгоритмы могут быть применены на других экспериментах, где используются детекторы MWPC и SiDet.

Апробация работы (1)

- Collaboration Meetings of the BM@N Experiment at the NICA Facility 2021, 2020, 2019 годы.
- Международная научная конференция молодых ученых и специалистов ОИЯИ 2021, 2020, 2018, 2016 годы.
- Школа-конференция молодых ученых и специалистов ОИЯИ Алушта 2021, 2016
- Meetings of the PAC for Particle Physics, Дубна, 2020, 2019, 2017 (стендовый доклад)
- The 18th International Conference on Strangeness in Quark Matter (SQM 2019), Бари, Италия, 2019 (стендовый доклад)
- The International Conference on Particle Physics and Astrophysics ICPPA 2018, 2017 годы.
- International Conference on Mathematical Modeling and Computational Physics (ММСР), Дубна, 2017
- Выступления на внутренних еженедельных совещаниях профильных рабочих групп на постоянной основе.

Апробация работы (2)

Работа выполнена в Лаборатории физики высоких энергий имени В.И. Векслера и А.М. Балдина ОИЯИ в рамках Проблемно-тематического плана 02-0-1065-2007/2023 - Комплекс NICA: создание комплекса ускорителей, коллайдера и экспериментальных установок на встречных и выведенных пучках ионов для изучения плотной барионной материи, спиновой структуры нуклонов и легких ядер, проведения прикладных и инновационных работ.

При поддержке следующих грантов, стипендий и премий:

- У Грант РФФИ 18-02-40046 «Анализ данных в эксперименте ВМ@N по изучению короткодействующих двухнуклонных корреляций во взаимодействии пучка ядер углерода с протонной мишенью»
- » Грант ОМУС 2023 год;
- » Стипендии имени А.М. Балдина 2022, 2021, 2020 годы.

Публикации

По теме опубликовано 7 научных работ в рецензируемых изданиях.

- **1. V. Lenivenko**, V. Palichik, M. Patsyuk, Reconstruction of simulated and experimental data in coordinate detector systems of SRC experimental setup at BM@N, Physics of Particles and Nuclei Letters, 20, 1403–1408 (2023)
- 2. V. Lenivenko, M. Patsyuk, V. Palichik, SRC at BM@N: reconstruction of tracks upstream and downstream the target using the MWPC and Silicon detector systems, AIP Conference Proceedings, 2377, 030010 (2021)
- **3. V. Lenivenko**, V. Palichik, *Reconstruction of Charged-Particle Trajectories in Multiwire Proportional Chambers at the BM@N Experiment*, Physics of Particles and Nuclei Letters, 15, 637-649 (2018)
- 4. M. Patsyuk, J. Kahlbow, G. Laskaris, M. Duer, V. Lenivenko, et al., Unperturbed inverse kinematics nucleon knockout measurements with a 48 GeV/c carbon beam, Nature Physics, 17, 693 (2021)
- 5. M. Patsyuk, T. Atovullaev, A. Corsi, O. Hen, G. Johansson, J. Kahlbow, V. Lenivenko, et al., BM@N data analysis aimed at studying SRC pairs: one-step single nucleon knockout measurement in inverse kinematics out of a 48 GeV/c 12C nucleus, Physics of Particles and Nuclei, 52, 631–636 (2021)
- 6. A. Galavanov, S. Khabarov, Y. Kirushin, E. Kulish, V. Lenivenko, et al., Studies of Short Range Correlations in inverse kinematics at BM@N at the NICA facility, J. Phys.: Conf. Ser., 1390, 012025, (2019)
- 7. S. Khabarov, E. Kulish, V. Lenivenko, A. Makankin, A. Maksymchuk, V. Palichik, et al., *First glance at the tracking detectors data collected in the first BM@N SRC run*, EPJ Web of Conferences, 201, 04002 (2019)

Соответствие диссертации паспорту специальности 1.2.2

Диссертационная работа включает результаты исследований, соответствующих трем пунктам, указанным в паспорте специальности:

2. Разработка, обоснование и тестирование эффективных вычислительных методов с применением современных компьютерных технологий.

3. Реализация эффективных численных методов и алгоритмов в виде комплексов проблемноориентированных программ для проведения вычислительного эксперимента.

4. Разработка новых математических методов и алгоритмов интерпретации натурного эксперимента на основе его математической модели.

Личный вклад

Положения и результаты, представленные в диссертации и в публикациях по теме диссертации, получены при определяющем участии соискателя либо при активном его участии.

Спасибо за внимание!

Ленивенко Василиса Викторовна vasilisa@jinr.ru