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•  3-fluid hydrodynamics 
• Hybrid models 
• Coarse graining 

 
• Quark Molecular Dynamics 
• Chiral Hydrodynamics 
• Chiral Particle Dynamics 

 
Tomorrow 
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QCD Phase Diagram: Sketch 

In heavy ion collisions heated and compressed nuclear 
matter is produced under controlled conditions 
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QCD Phase Diagram: „Reality“ 

• Except for µΒà0, many features are unknown 
• Order of PT, critical points, dof (Quarkyonic matter?) 

QCD/Models 

M. Stephanov PoS 2006 L. Bravina, M.B., et al., JPG 1999 
I. Arsene et al., PRC 2007 
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QCD phase diagram: an overview M. Stephanov
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Figure 4: Comparison of predictions for the location of the QCD critical point on the phase diagram. Black
points are model predictions: NJLa89, NJLb89 – [12], CO94 – [13, 14], INJL98 – [15], RM98 – [16],
LSM01, NJL01 – [17], HB02 – [18], CJT02 – [19], 3NJL05 – [20], PNJL06 – [21]. Green points are lattice
predictions: LR01, LR04 – [22], LTE03 – [23], LTE04 – [24]. The two dashed lines are parabolas with
slopes corresponding to lattice predictions of the slope dT/dµ2B of the transition line at µB = 0 [23, 25].
The red circles are locations of the freezeout points for heavy ion collisions at corresponding center of mass
energies per nucleon (indicated by labels in GeV) – Section 5.

3.4 Predictions from models

In the absence of a controllable (i.e., systematically improvable and converging in the V → ∞
limit) method to simulate QCD at nonzero µB, one turns to model calculations. Many such calcula-
tions have been done [12, 13, 14, 15, 16, 17, 18, 19, 20, 21]. Figure 4 summarizes the results. One
can see that the predictions vary wildly. An interesting point to keep in mind is that each of these
models is tuned to reproduce vacuum, T = µB = 0, phenomenology. Nevertheless, extrapolation to
nonzero µB is not constrained significantly by this. In a loose sense, most lattice methods (see next
Section) can be also viewed as extrapolations from µB = 0, albeit with reliable input from finite T .

4. Lattice results on the critical point

This section is devoted to brief (and necessarily incomplete) descriptions of currently devel-
oped lattice methods for reaching out into the TµB plane. The comments below are selective and
are meant to complement the original contributions in this volume. For a more comprehensive
description of these methods, as well as other methods not discussed here, the reader may consult
the most up-to-date review of Schmidt in these proceedings [2] as well as an earlier review by
Philipsen [26], both of which also contain further references to original papers.

4.1 Reweighting

The first lattice prediction for the location of the critical point was reported by Fodor and
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Signals of the Phase Transition 

Potential Signals 

• Correlation length 
•  Fluctuations 
• Softening of the EoS 
• Delayed expansion 
• Parton coalescence 
• Change of the dof 
• Entropy production 
•  Fragmentation 

Potential Observables 

• Non-Gaussian fluctuations 
• Charge ratio fluctuations 
•  Irregular v1 vs Elab 

• HBT and/or Photons 
• Elliptic flow, exotic mesons 
•  Thermalization 
• Pion yield 
• Cluster formation / vn 
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Need for 
Simulations 

HISS-2018, Dubna 8 



Time Evolution of Heavy Ion Collisions 

1x 10-23 s  10 x 10-23 s  30 x 10-23 s  

Hybrid approaches are very successful for the 
description of the dynamics 

Nuclei at 99 %  
speed of light 

Quark Gluon Plasma Measurable Fragments 
in the detector 

Hadronic 
Rescattering 

Nonequilibrium 
initial state 
dynamics 

Relativistic 
Hydrodynamics/ 
Parton dynamics 

Hadron Transport 

Hannah Petersen, special issue JPG, arXiv:1404.1763 
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Models 

• Hybrid models 
(UrQMD, NexSpherio, hydro+JAM, 
MUSIC, Nonaka) 

• 3 fluid hydrodynamics 
(Ivanov, Brachmann) 

• Multi-phase models (AMPT) 
• Quark molecular dynamics 
(qMD, Martens) 

• Parton Cascades + Coales. 
(Molnar) 

• Chiral hydrodynamics 
(Dumitru, Nahrgang) 

 

Ab-initio simulations, 
e.g. lattice QCD are not 
possible for dynamical 
systems 
 
Effective approaches 
are needed 
 
Phase transitions out of 
equilibrium are difficult 
to describe 
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THREE FLUID HYDRO 
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Motivation 

1-fluid hydrodynamics 

•  Instantaneous local 
equilibration between 
projectile and target nuclei 

• à unrealistically large 
energy densities (pressure) 
and baryon densities 

• à too large flow 

3-fluid hydrodynamics 

• Set-up: Target and 
projectile nuclei (fluid 1+2). 
Fluid 3: Fireball  

•  Introduce gradual 
deceleration, pump energy 
into fireball fluid 

• Merge fluids when locally in 
equilibrium 

• à realistic energy and 
baryon densities 
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E, M⃗ , R denote energy, momentum, and baryon density in the computational frame. They

are related to the local rest frame quantities ϵ, p and n via

E ≡ T 00 = γ2(ϵ + p) − p , (7)

M i ≡ T i0 = γ2(ϵ + p)vi ,

R ≡ j0 = γn .

The system (6,7) of coupled differential equations is closed via the assumption of local

thermodynamic equilibrium and by specifying an EoS in the form p(ϵ, n).

In hydrodynamics for N fluids, we split the energy-momentum tensor and the baryon

current of the total system into a sum of N terms,

T µν = T µν
1 + T µν

2 + · · · + T µν
N , (8)

jµ = jµ
1 + jµ

2 + · · ·+ jµ
N .

The total system is now subdivided into N individual fluids. Note that eqs. (8) hold lo-

cally, i.e. different fluids may coexist at the same space-time point. Each individual energy-

momentum tensor T µν
l and baryon current jµ

l does not need to be conserved, since the N

subsystems may exchange energy, momentum and baryon charge:

∂µT µν
l = F ν

l , (9)

∂µjµ
l = Sl (l = 1, ·, N) .

F ν
l denote energy and momentum sources of fluid l, and Sl the baryon charge exchange for

each fluid. Due to eqs. (2,4), i.e. the conservation of total energy, momentum and baryon

charge, we have the additional equations

F ν
1 + F ν

2 + · · · + F ν
N = 0 , (10)

S1 + S2 + · · ·+ SN = 0 .

8

Equations of 
motion 

Split Energy-Momentum 
Tensor and currents into 
individual fluids 
 
Introduce source terms for 
the coupling 
 
Solve larger set of 
equations, including 
conservation equations for 
total energy and current 
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2.2 Multi-fluid relativistic ideal hydrodynamics

The basic equations of relativistic one-fluid hydrodynamics are the conservation of energy

and momentum,

∂µT µν = 0 . (2)

If we assume an ideal fluid (i.e., neglecting dissipative effects), the energy-momentum tensor

T µν reads [2]

T µν = (ϵ + p)uµuν − pgµν , (3)

where ϵ(x) is the energy density in the local rest frame, p(x) the pressure, uµ(x) = γ(1, v⃗) the

4-velocity field (normalized to unity, uµuµ = 1), and gµν = diag(1,−1,−1,−1) the metric

tensor.

In addition, there may exist several conserved currents jµ
i , for which the continuity equa-

tions

∂µjµ
i = 0 (4)

hold. We will consider only one such conserved current, namely the net baryon current

jµ = nuµ , (5)

where n(x) denotes the net baryon density in the local rest frame.

As computational frame we choose the frame where the longitudinal velocities of projectile

and target nuclei are of equal magnitude. In this frame equations (2,4) read

∂tE + ∂i(Evi) = −∂i(pv
i) , (6)

∂tM
j + ∂i(M

jvi) = −∂jp ,

∂tR + ∂i(Rvi) = 0 .

7

2.2 Multi-fluid relativistic ideal hydrodynamics

The basic equations of relativistic one-fluid hydrodynamics are the conservation of energy

and momentum,

∂µT µν = 0 . (2)

If we assume an ideal fluid (i.e., neglecting dissipative effects), the energy-momentum tensor

T µν reads [2]

T µν = (ϵ + p)uµuν − pgµν , (3)

where ϵ(x) is the energy density in the local rest frame, p(x) the pressure, uµ(x) = γ(1, v⃗) the

4-velocity field (normalized to unity, uµuµ = 1), and gµν = diag(1,−1,−1,−1) the metric

tensor.

In addition, there may exist several conserved currents jµ
i , for which the continuity equa-

tions

∂µjµ
i = 0 (4)

hold. We will consider only one such conserved current, namely the net baryon current

jµ = nuµ , (5)

where n(x) denotes the net baryon density in the local rest frame.

As computational frame we choose the frame where the longitudinal velocities of projectile

and target nuclei are of equal magnitude. In this frame equations (2,4) read

∂tE + ∂i(Evi) = −∂i(pv
i) , (6)

∂tM
j + ∂i(M

jvi) = −∂jp ,

∂tR + ∂i(Rvi) = 0 .

7

2.2 Multi-fluid relativistic ideal hydrodynamics

The basic equations of relativistic one-fluid hydrodynamics are the conservation of energy

and momentum,

∂µT µν = 0 . (2)

If we assume an ideal fluid (i.e., neglecting dissipative effects), the energy-momentum tensor

T µν reads [2]

T µν = (ϵ + p)uµuν − pgµν , (3)

where ϵ(x) is the energy density in the local rest frame, p(x) the pressure, uµ(x) = γ(1, v⃗) the

4-velocity field (normalized to unity, uµuµ = 1), and gµν = diag(1,−1,−1,−1) the metric

tensor.

In addition, there may exist several conserved currents jµ
i , for which the continuity equa-

tions

∂µjµ
i = 0 (4)

hold. We will consider only one such conserved current, namely the net baryon current

jµ = nuµ , (5)

where n(x) denotes the net baryon density in the local rest frame.

As computational frame we choose the frame where the longitudinal velocities of projectile

and target nuclei are of equal magnitude. In this frame equations (2,4) read

∂tE + ∂i(Evi) = −∂i(pv
i) , (6)

∂tM
j + ∂i(M

jvi) = −∂jp ,

∂tR + ∂i(Rvi) = 0 .

7

2.2 Multi-fluid relativistic ideal hydrodynamics

The basic equations of relativistic one-fluid hydrodynamics are the conservation of energy

and momentum,

∂µT µν = 0 . (2)

If we assume an ideal fluid (i.e., neglecting dissipative effects), the energy-momentum tensor

T µν reads [2]

T µν = (ϵ + p)uµuν − pgµν , (3)

where ϵ(x) is the energy density in the local rest frame, p(x) the pressure, uµ(x) = γ(1, v⃗) the

4-velocity field (normalized to unity, uµuµ = 1), and gµν = diag(1,−1,−1,−1) the metric

tensor.

In addition, there may exist several conserved currents jµ
i , for which the continuity equa-

tions

∂µjµ
i = 0 (4)

hold. We will consider only one such conserved current, namely the net baryon current

jµ = nuµ , (5)

where n(x) denotes the net baryon density in the local rest frame.

As computational frame we choose the frame where the longitudinal velocities of projectile

and target nuclei are of equal magnitude. In this frame equations (2,4) read

∂tE + ∂i(Evi) = −∂i(pv
i) , (6)

∂tM
j + ∂i(M

jvi) = −∂jp ,

∂tR + ∂i(Rvi) = 0 .

7

From 1-fluid equations to 3-fluids: 

Split T and j into different fluids: 

Each individual T and j is not conserved (source terms) 

E, M⃗ , R denote energy, momentum, and baryon density in the computational frame. They

are related to the local rest frame quantities ϵ, p and n via

E ≡ T 00 = γ2(ϵ + p) − p , (7)
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8
Mishustin et al, NPA 494 (1989) 595 
Toneev et al, Phys.Part.Nucl.Lett. 2 (2005) 288 
Brachmann et al, NPAA619 (1997) 391 
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Coupling 
between the 
fluids 

Split Energy-Momentum 
Tensor and currents into 
individual fluids 
 
Introduce source terms for 
the coupling 
 
Solve larger set of 
equations, including 
conservation equations for 
total energy and current 
 
 

Energy/momentum loss of fluid l per time per volume  
via the collision rate 

Splitting the integral into moments yields  
(E‘,p‘ are after the collision) and neglecting <.>) 

Sigma_E and sigma_P are parametrized  
from experimental data 

Following the discussion in section 2.1, we choose N = 3 and identify fluid 1 with the

projectile and fluid 2 with the target nucleons. Fluid 3 collects the energy loss of projectile

and target nucleons due to inelastic collisions, and will thus be identified with the produced

particles. At time t = 0 (in the computational frame), the third fluid is not yet existent:

jµ
3 (t = 0, x⃗) = 0, T µν

3 (t = 0, x⃗) = 0.

2.3 Coupling terms between the fluids

We now discuss the couplings between the three fluids, based on the assumption that they

are well separated in rapidity.

We first discuss the interaction between projectile and target. The total one-particle

distribution function can be written as the sum of two individual distribution functions for

projectile and target nucleons, respectively:

f(t, x⃗, p⃗) = fP (t, x⃗, p⃗) + fT (t, x⃗, p⃗) . (11)

Due to the strongly forward-backward peaked cross section (see discussion in section

2.1) in high energy pp-collisions it is possible to identify the projectile respectively target

nucleon even after the reaction. The nucleon scattered into the forward hemisphere belongs

by definition to the same flow as the one previously heading in this direction. Consequently,

projectile and target fluid do not exchange baryon charge: S1 = S2 = 0. From eq. (10) and

the fact that the fireball is also separated in phase space from the nucleonic fluids, it follows

that the fireball remains net baryon free, S3 = 0.

The source terms of the energy-momentum tensor F ν
l in eq. (9) describe the energy

respectively momentum loss of fluid l per volume and per unit time. We define

F ν
l = n1 n2

〈

vMøller

∫

p̃′
||
>0

dσNN→NX (p′ − p)ν

〉

, dσNN→NX = σinv
NN→NX

d3p′

E ′
. (12)

9

This is simply the collision rate per volume n1 n2 vMøller dσ for scattering into the invariant

phase space volume d3p′/E′ times the average 4-momentum loss (p′ − p)ν in a single binary

NN -collision. σinv
NN→NX denotes the invariant differential cross section. p′ν , pν are the 4-

momenta of the particle after and before the collision, respectively. The integration extends

over the forward hemisphere of the cross section only (p̃′|| > 0). Quantities with a tilde refer

to the center-of-mass frame of the binary NN collision. The ni denote the local rest frame

baryon densities of projectile and target, as defined in eqs. (5) and (7). vMøller denotes the

invariant relative velocity of the two fluids [20]:

vMøller =
√

(uµ
1 u2µ)2 − 1 . (13)

The ⟨·⟩-averaging over the individual particle distribution functions provides a smearing of

the sourceterms (accounting for the thermal and Fermi momenta of the particles), especially

of the Møller velocity. It is negligible during the compressional stage of the reaction since

the internal velocities within each fluid element are small compared to the Møller velocity of

the colliding fluids. We therefore ignore this averaging. Instead, when thermal and relative

velocities of the colliding fluids become comparable in the later stage of the collision, the

fluids are unified (see section 2.5).

In principle it is always possible to split the sourceterms in a symmetric and an antisym-

metric part with respect to the fluid indices (1 ↔ 2):

∂µT µν
1 = f ν

exchange − f ν
loss ,

∂µT µν
2 = −f ν

exchange − f ν
loss , (14)

∂µT µν
3 = 2f ν

loss .

The antisymmetric term f ν
exchange describes the exchange of energy and momentum between

projectile and target fluid, while f ν
loss denotes the loss of energy and momentum transferred

10
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to the fireball.

Following [15, 16, 17] we split the integral in eq. (12) into two moments,

F ν
1 =

1

2
n1 n2 vMøller [(p2 − p1)

νσP (s) − (p2 + p1)
νσE(s)] , (15)

F ν
2 =

1

2
n2 n1 vMøller [(p1 − p2)

νσP (s) − (p1 + p2)
νσE(s)] .

Since we neglect the ⟨·⟩-averaging, the particle momenta are simply given by pν
1,2 = mNuν

1,2.

The moments of the cross section σE and σP are defined as

σE(s) =
∫

p̃′
||
>0

dσNN→NX

(

1 −
Ẽ ′

Ẽ

)

, σP (s) =
∫

p̃′
||
>0

dσNN→NX

(

1 −
p̃′||
p̃||

)

(16)

and parametrize the mean energy respectively longitudinal momentum loss in a single nucleon-

nucleon collision. E, p⃗ are energy and momentum of the nucleon before the collision, while

E ′, p⃗′ denote the same quantity after the collision. Again, the integration is carried out only

over the forward hemisphere of the cross section (p̃′|| > 0).

Comparing eqs. (14) and eqs. (15) we see that σE corresponds to the symmetric term and

leads to the production of the fireball. Analogously, σP is the antisymmetric term describing

the exchange of energy and momentum between projectile and target fluids. Also, from

this form of the coupling terms it immediately follows that the third fluid is produced at

midrapidity: in the CMS p⃗1 = −p⃗2 and thus F⃗3 = 0⃗. The hydrodynamical eqs. (10) and the

specific form of the sourceterms, eq. (15), can also be derived from the Boltzmann equation

[17].

We employ the parametrizations of σP,E from the two-fluid model of refs. [15, 16, 17].

There the cross sections of free binary NN collisions (NN → N∗X) have been used to

evaluate the moments σP,E. The incident baryons are assumed to be nucleons, whereas in

the final state we sum over all baryons N∗. The rescattering with the fireball (Nπ → X) is

not considered, since the contribution to the total cross section outside the ∆-resonance is
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Besides up and FE it is useful to introduce the transport cross section Us. It 
characterizes the average 4-momentum transfer squared, t = (p: -P~)~, in a single 
NN collision. From simple kinematic relations, one can obtain 

According to the definition (X), only inelastic channels of the NN interaction 
(with EL < gak> contribute to a,. Using sum rules for inclusive NN cross sections 
and taking into account only pion production channels, we obtain “) the expression 

c+(s) = s-l’* dcrr.,N_,X&, (1% 

where I?,, is the c.m. pion energy. It can be shown that in the considered energy 
region other inelastic channels give a relatively small contribution to a,. 

The essential approximation of our model is the neglect of pion rescatterings on 
baryons. This may be justified by the following reasons. First, at high enough Elab 
the A-resonance region, where the rrN cross section, onN, is large, occupies a small 
fraction of the momentum space available. Outside this region the rrN cross section 
is relatively small (a,JaNN==0.5). Second, W’S and N’s distribution functions are 
well separated in the momentum space at the early stage of the reaction (pions 
occupy, mainly, the central rapidity regions and baryons are concentrated, pre- 
dominantly, in the projectile and target fragmentation regions). As a result, several 
collisions of pions with baryons are needed to bring them into thermal equilibrium. 
Finally, the finite hadronization time for pions also leads to the effective suppression 
of TN rescattering at high beam energies. 

The energy and momentum carried away by pions are described by the friction 
force term propo~ional to @E. Therefore, only part of the kinetic energy loss of 
baryon flows is transformed into their internal energy (compression and heating up 
of projectile and target fluids). The remaining fraction of energy goes over into the 
pion emission. The energy balance is given by the relation *) 

a,( z-F+ Tfk) = -aJ$ = -npn,( V,,,(p,+p,)‘a,(s)) , (11) 
where Tc is the energy-momentum tensor of pions emitted in the process of nuclear 
collision. Taking into account pion emission and the more complicated structure 
of the friction force distinguishes this model from other variants of the TFM ‘o-‘2). 

To calculate tag and crP(s), we used phenomenological parametrizations of 
data for the pp-+ rrX 13) and NN + NX 14) reactions (for details see ref. “)). Below 
the pion production threshold (Elab = 0.3 GeV) cr, =0 and up equals the transport 
cross section of the elastic NN collision. At large s (s”* Z= 5 GeV) a, and a, become 
almost equal, increasing logarithmically due to growth of the pion multiplicity. The 
evaluation of C+(S) is more difficult because it goes to zero at large s [ref. “)I. A 
direct calculation from eq. (9), using parametrizations of the NN + NX cross section 
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Energy deposition of the Projectiles 

Figure 2: Energy density profile (in units of ϵ0 ≈ 0.15 GeV/fm3) of the projectile fluid along

the beam axis (in the plane x = y = 0).

22

1-fluid/3-fluid comparison 

•  Less energy density 
•  Transition of the projectile 
• Different time of highest 

compression 
• à Less flow 
• à Lower temperatures 

Brachmann et al, NPAA619 (1997) 391 
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3 minute break 
• Discuss with your neighbor  
 

how to measure the pressure in the  
central collision region 
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Directed Flows A long long time ago
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FIG. 1. Peripheral collision viewed in the transverse plane. b
is the impact parameter. The shaded area corresponds to the
region where particles are created in the central rapidity region.
Outside this region is the vacuum.

S
f, +f,BzF 0

0 2. (2.4)

The term f38F, which may be important, is the remnant
of the bounce off. From Eq. (2.3), one getsf3 —-S33=+M &to(v)p, (v). Thus, the main contribution
to fz comes from the fragmentation regions which corre-
spond to the highest values of ~p, ~

in the center-of-mass
frame. We shall hereafter restrict our study to the cen-
tral rapidity region where ~p, ~

is much smaller, and we
assume that fzBF is negligible in this case. Thenf( —-S(t =g„tw(v)p„(v), fz =Szz =g„tw(v)py~(v},
and the sidesplash of the reaction products along the
direction of impact parameter x results in f, &fz. The
whole rapidity range may contribute to this effect. A nat-
ural measure of this anisotropy in transverse momenta is
the dimensionless observable a defined as

g w ( v) [p„(v)—p„(v) ]fi fz-
f +f M

g w(v)[p„(v) +py(v) ]
(2.5)

a=O for an isotropic distribution (f, =fz), whereasa=1 if all momenta are directed along the impact line
(fz=0). The last equality in Eq. (2.5) holds only if x is
the direction of impact parameter. Alternatively, we can
use the following expression which is valid in any coordi-
nate system for the transverse plane:

1/2
4detSa= 1—
(trS )' (2.6)

This allows one to calculate a directly as a function of
the measured transverse sphericity tensor S;.. It appears
clearly in this form that a is the only observable we can
construct from S;. if we require it to be dimensionless and
invariant through rotations about the collision axis. The
ultrarelativistic case is thus simpler than the low-energy
case where three rotationally invariant and dimensionless
parameters must be considered. A collective How would
reveal itself through a nonzero value of a for peripheral

III. FINITE MULTIPLICITY FLUCTUATIONS

A. Jacobian-free analysis

With a finite number of particles M, one never obtains
an isotropic distribution, even if the particles are emitted
according to an isotropic emission probability. Even
worse, as we shall see, an isotropic emission probability
gives rise to a probability law for a which is not centered
at a=O as we would expect, but rather at a value
a-1/~M. Here we show how to get rid of this shift by
defining a corrected distribution for a, following the
analysis of Danielewicz and Gyulassy [7].
If correlations between particles are neglected, the cen-

tral limit theorem states that in the limit of large multi-
plicity M the probability law for S; is of Gaussian form
and strongly peaked around its mean value (S~ },with a
width varying like 1/v M. However, we are not interest-
ed in the distribution of S; but rather in the distribution
of a. In order to change variables, we need two other
quantities since S;- has three independent components.
We take, for instance, v = trS =+M Ipz. (v) and the an-
gle 0 between the I axis and the largest principal axis of
S~. Then, in terms of the variables (a, @,8), the expres-
sionofS is

1+a cos28
a sin28

a sin20
1—a cos20 (3 1)

Transforming variables from S;. to a, 6, and 8 brings in a
Jacobian factor

collisions, while a=0 for central collisions, which are iso-
tropic in the transverse plane. So we must study the
correlation of a with the multiplicity (we recall that the
multiplicity is a fair measure of the impact parameter
[4]). We expect that a will be a decreasing function of
the multiplicity if collective transverse Bow occurs.
Finally, note that the weight w(v) = 1/2m

„

in Eq. (2.1)
is quite inappropriate at ultrarelativistic energies. First,
S,,- does not represent the kinetic energy any more.
Second, composite fragments for which this weight was
introduced represent a negligible fraction of the emitted
particles, especially in the central rapidity region. Third,
the transverse momenta of different types of particles
have comparable distributions (this is the observed mz.
scaling [5]}. Thus, we shall take w(v)=1, and the trans-
verse sphericity tensor is then simply defined as

M
S~J = g p, (v)p, (v) (2.7)

v= 1

with i,j=1,2. Since S; only involves the transverse mo-
menta, it is invariant under Lorentz boosts along the col-
lision axis. This is a nice property from a theoretical
point of view since the central rapidity region is expected
to enjoy the same property at high energies [6]. From the
experimental point of view, restricting ourselves to trans-
verse coordinates allows us to measure S; directly in the
laboratory frame for fixed-target experiments.
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I I

b[rm]
6
I

2 0
argument is the following: at a small time ~ after
thermalization, the fluid velocity is proportional to ~ ac-
cording to the relativistic Euler equation

0.8—
VP 7
W

T
Ro

(5.3)

0.4—

0.2

0.0
100 200

N
300 400

FIG. 4. Lead-lead collision and equation of state of a mass-
less pion gas. Solid lines: anisotropy a as a function of the
number of participating nucleons N. The impact parameter b is
also shown on the horizontal scale. The decoupling tempera-
ture is Td=150 MeV. The initial time is to=2 fm/c for the
lower curve and to=1 fm/c for the upper curve. Dashed line:
linear approximation, Eq. (5.2).

where w =4P is the enthalpy density and Ro is a typical
transverse size. Thus, the transverse velocity is, in any
case, small at times much smaller than Ro. Therefore, if
one changes the thermalization time from to«Rp to
to «Rp one expects that any observable associated with
transverse collective fiow (and, in particular, the anisotro-
py a) undergoes a relative change of order
(to t —o)/R 0«1, which can be neglected in a first ap-
proximation. The hypothesis that to «Ro thus allows
one to get rid of the uncertainty on to. However, it is not
satisfied for very peripheral collisions where the trans-
verse dimensions are smaller, and where the thermaliza-
tion time could also be bigger since the density is lower.
The results of numerical calculations carried out with

two different values of to are displayed in Fig. 4. As ex-
pected, the difference between the two curves is negligible
except for small multiplicities, which correspond to very
peripheral collisions where to-RO.

C. Influence of the decoupling temperature

anisotropy in the initial conditions. The only difference is
for very peripheral collisions with b &12 fm where the
decrease of a is more important than that of a, . We shall
comment on this later in this section. The variation of a
with N is almost linear, so that the formula

a=a,„(1N/N, „)— (5.2)

with a,„=0.33 and N,„=395(value of N for a central
collision) reproduces the numerical results remarkably
well down to N =N,„/10.

B. Influence of the initial time

The initial time to fixes the beginning of hydrodynami-
cal expansion. One expects this time to be of the order of
1 fm/c, which is the order of magnitude of the time it
takes the nuclei to cross each other, and also the typical
scale for the formation of particles. However, it is
diScult to estimate this time accurately. Even the con-
cept of initial time is itself a simplification: since the ini-
tial density is not homogeneous, different parts of the sys-
tern can thermalize at different times. Thus, it is neces-
sary to study how a modification of to affects the anisot-
«py.
In fact, it is easy to show [10] that the transverse col-

lective flow is not much affected by a change of the
thermalization time to as long as the latter remains much
smaller than the transverse size Ro of the system, which
is as large as 7 fm/c for a central lead-lead collision. The

T~s—To ( r0 /R 0 ) (5.4)

and one expects the anisotropy to vary slowly with Td if
Td & Tea.
Concerning the impact-parameter dependence, two

effects must be considered: First, Td (which is the temper-
ature at which the mean free path equals the dimension
of the system) is larger for a smaller system, and thus in-

While to fixes the time when hydrodynamic expansion
starts, the decoupling temperature tells us when it stops.
One usually assumes that Td is of the order of the pion
mass, but its precise value remains uncertain. The small-
er Td, the longer hydrodynamics lasts. Since collective
flow creates anisotropy, one naturally expects a to in-
crease with decreasing Td.. if Td is as big as the initial
temperature To, the system decouples as soon as it
thermalizes and since the initial distribution is isotropic
in the transverse plane, a is zero; in the limit Td ~0, on
the other hand, a reaches its maximum value. (This is, in
fact, not always true, but we shall come back to this point
in Sec. VI A.) The question which arises is whether there
is a typical scale for Td, under which the variations of a
can be neglected. In fact, once the transverse expansion
has fully developed, one intuitively expects a to increase
only slowly with time. The time it takes for the trans-
verse expansion to develop is of the order of the trans-
verse size Ro of the system. The typical temperature at
this time, which we refer to as the effective temperature
T,~, can be estimated simply: since longitudinal expan-
sion dominates for to &Ro, the entropy density decreases
like [6] 1/t. Using Eq. (5.1), the temperature at t =Ro is
then approximately given by
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• The squeeze-out (v_2) and the bounce-off 
(v_1) are related to the pressure of the system 
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Is the existence of a softest point in the directed flow excitation function
an unambiguous signal for the creation of a quark-gluon plasma?

Marcus Bleicher and Jörg Aichelin
SUBATECH, Laboratoire de Physique Subatomique et des Technologies Associées

University of Nantes - IN2P3/CNRS - Ecole des Mines de Nantes
4 rue Alfred Kastler, F-44072 Nantes Cedex 03, France

The excitation function of the in-plane directed flow of nu-
cleons is studied within a non-equilibrium transport approach.
It is demonstrated that a local minimum in the excitation
function of the directed flow develops, which is not related to
a transition into a quark-gluon plasma (QGP) phase. It is
a consequence of the dynamical softening of the underlying
equation of state, due to the onset of resonance matter and
particle production. Thus, the interpretation of this mini-
mum as a ’smoking gun’ signature for the creation of a QGP
is premature.

The excitation functions of hadron ratios and hadron
flow has since long been suggested to search for evidence
of exotic states and phase transitions in nuclear colli-
sions [1,2].

Especially the in-plane collective flow is the earliest
predicted observable to probe heated and compressed nu-
clear matter [3]. Its sensitivity to the equation of state
(EoS) might be used to search for abnormal matter states
and phase transitions [4–6]. Until now, the study of in-
plane and azimuthal flow in high energy nuclear collisions
is attracting large attention from both experimentalists
and theorists [7–11].

In fluid dynamics, the transverse collective flow is inti-
mately connected to the pressure P (ρ, S) (which in turn
depends on the density ρ and the entropy S) of the mat-
ter in the reaction zone [25]:

p ∝
∫

t

∫

A

P (ρ, S) dA dt . (1)

Here dA represents the surface element between the par-
ticipant and spectator matters and the total pressure is
the sum of the potential pressure and the kinetic pres-
sure, while t denotes the time over which the pressure
acts. Thus, the transverse collective flow depends di-
rectly on the equation of state, P (ρ, S).

The sensitivity of the flow on the equation of
state [7,8,12–15] which governs the evolution of the sys-
tem created in violent nucleus-nucleus collisions is con-
veniently addressed in terms of Fourier coefficients vi of
the azimuthal distribution (given by the angle φ) of the
explored hadrons. At fixed rapidity on expands:

dN

dφ
= 1 + 2 v1 cos(φ) + 2 v2 cos(2φ) , (2)

with

v1 =

〈

px
√

p2
x + p2

y

〉

, v2 =

〈

p2
x − p2

y

p2
x + p2

y

〉

. (3)

The first coefficient describes the directed in-plane
flow. The directed flow is most pronounced in semi-
central interactions around target and projectile rapidi-
ties where the spectators are deflected away from the
beam axis due to a bounce-off from the compressed and
heated matter in the overlap region. The time scales
probed by the directed flow are set by the crossing time
of the Lorentz-contracted nuclei. Thus, it serves as key-
hole to the initial, probably non-equilibrium, stage of the
reaction.

In contrast, the elliptic flow [12,16–24] as measured by
the v2 coefficient is generated after the overlap of the ini-
tial nuclei. This type of flow is strongest around central
rapidities in semi-peripheral collisions. It is driven by the
anisotropy of the pressure gradients, due to the geometry
of the initial overlap region. Therefore, it is a valuable
tool to gain insight into the expansion stage of the fire
ball

Both types of flow can be used to investigate the so-
called ’softest point’ - i.e. a local minimum of P/ϵ as
a function of the energy density ϵ - in the EoS [26].
As pointed out in [26,27], the existence of this ’softest
point’ leads to a prolonged expansion of matter and con-
sequently to a long lifetime of a mixed phase of QGP
and hadron matter. Analogously, it also takes longer to
compress matter in the early stage of a heavy–ion col-
lision [28]. These features result in two key predictions
as ’smoking gun’ signatures for Quark-Gluon-Plasma for-
mation:

• A kinky centrality dependence of the scaled elliptic
flow [29] and

• a minimum in the excitation function of the di-
rected in-plane collective flow [1].

Especially, the observation of this local minimum in the
energy dependence of the in-plane directed flow

pdir
x =

1

M

M
∑

i

px,i sgn(yi) (4)

in heavy–ion collisions - here i sums over all considered
nucleons, px,i is the momentum in x direction of nucleon
i and yi denotes the rapidity of nucleon i - has been
suggested to be a clear signature for a change of nuclear

1
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Figure 6: The evolution of ⟨px/N⟩ in the one-fluid limit.
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Figure 7: The evolution of ⟨px/N⟩ in the three-fluid model.
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Directed Flow 

Definition and interpretation 

z-direction, and the reaction plane to be the z − x–plane. At BEVALAC energies, the two
nuclei “bounce off” each other, giving rise to a positive average momentum ⟨px(y)/N⟩ per
nucleon in the forward direction [1]. In momentum space, the flow of matter can be described
in terms of an ellipsoid, defined by the principal axis’ of the tensor of inertia [14, 1], which
is tilted in the reaction plane by an angle Θflow with respect to the beam axis. However, the
actual shape of the distribution of matter in momentum space needs not be ellipsoidal, see
below.

In this paper we show that the situation is fundamentally different if the equation of state
of nuclear matter is softened, either by a phase transition to the quark-gluon plasma or by
the creation of resonances and string-like excitations. To this end, we employ one- [2, 3] and
three-fluid dynamics [9], as well as the microscopic model UrQMD [15]. We demonstrate
that, around AGS energies, the event shape resembles an ellipsoid in coordinate space, tilted
by an angle Θ with respect to the beam axis. This ellipsoid expands predominantly ortho-

gonal to the direction given by Θ; we therefore term this flow component antiflow. Around
midrapidity, the antiflow largely cancels the directed flow from the “bounce–off” of the two
nuclei [16]. We emphasize that here “antiflow” does not mean the flow of antiparticles [17],
which is an absorption phenomenon, nor the low energy (i.e. Ekin

Lab ≃ 100 MeV/N) antiflow
due to attractive potentials [18].

This antiflow component has impact on studies of transverse elliptic flow within sim-
plified geometrical overlap models [5, 8, 19]. These studies assume that the longitudinal
flow vanishes at z = 0 in the whole transverse plane. The non-trivial ellipsoidal event shape,
however, couples longitudinal to transverse flow, and the longitudinal flow no longer vanishes
everywhere in the transverse plane at z = 0. The amount of longitudinal flow is sensitive to
the equation of state, as well as the impact parameter and the bombarding energy, and can
only be determined in fully 3+1-dimensional calculations.

In order to measure the EoS, i.e., in fluid-dynamical terms the pressure p(e, ρ) as a
function of energy density e and baryon density ρ in the local rest frame of a fluid element,
one studies the transverse momentum in the reaction plane, px. This quantity is proportional
to the pressure created in the hot and dense collision zone [1]:

px ∼
∫

p A⊥ dt . (1)

The pressure p is exerted over a transverse area A⊥. For increasing bombarding energy, the
flow, ∼ px, first increases, as the compression and thus the pressure grow. However, at large
Ekin

Lab the time span of the collision decreases, diminishing the flow again. The flow is thus
maximized at some intermediate bombarding energy.

A phase transition softens the EoS [2]. The pressure increases slower with e and ρ than
in the case without phase transition, reducing the velocity of sound. This delays the fluid-
dynamical expansion considerably, giving the spectators time to pass the hot and dense
zone, before they are deflected. One-fluid calculations [2] therefore show a local minimum
(at ≃ 8 AGeV) of the excitation function of the directed flow per nucleon, defined as

pdir
x

N
≡

(

∫

dy
dN

dy

)−1
∫

dy
dN

dy

〈

px

N
(y)
〉

sgn(y) . (2)

2

Time dependence 

This is the weighted mean transverse in-plane momentum ⟨px/N(y)⟩ per nucleon, introduced
in [14]. The weight is the net-baryon rapidity distribution, dN/dy. In a fluid-dynamical
context, the mean transverse momentum ⟨px/N(y)⟩ is defined as

〈

px

N
(y)
〉

=

∫

yd
3xR(x) mN ux(x)
∫

yd
3xR(x)

, (3)

ux ≡ γ vx denotes the x–component of the local 4-velocity field, and mN is the nucleon
rest mass. R is the zero-component of the net-baryon 4-current, R = γρ. Here, thermal
smearing is neglected, and it is assumed that the x–component of the nucleon momentum
can be approximated by mN ux. The volume integration is performed over all fluid elements
(projectile and target) around a given rapidity y.1

no PT

(0.637)

with PT

(0.775)

Figure 1: Time-evolution (in the CM-frame) of directed flow, pdir
x /N , for a Au+Au reaction

at 8 AGeV, b = 3 fm, with and without phase transition to the QGP, calculated in one-fluid
dynamics. The numbers in parentheses denote the mean net-baryon density in units of the
ground state density ρ0 ≃ 0.16 fm−3 at the end of the time evolution.

The EoS used in our one- and three-fluid calculations includes a first order phase tran-
sition to a quark-gluon plasma (QGP). The hadronic phase consists of nucleons interacting
via exchange of σ and ω mesons [20], and of non-interacting, massive pions. The QGP phase
is described in the framework of the MIT-Bag model [21] as a non-interacting gas of massless
u and d quarks and gluons, with a bag parameter B1/4 = 235 MeV, resulting in a critical

1 In the three-fluid model, since the third fluid is by construction baryon-free, the integration covers only
projectile and target fluids.

3

temperature Tc ≃ 170 MeV. There is a first order phase transition between these phases,
constructed via Gibbs’ conditions of phase coexistence.

In Fig. 1, we compute the time evolution of the directed flow, pdir
x /N , in one-fluid dynam-

ics, for a Au+Au collision at impact parameter b = 3 fm and collision energy Ekin
Lab = 8 AGeV.

One observes that, due to the softening of the EoS in a phase transition to the QGP, less
directed flow is produced in the early compression stage than in a purely hadronic scenario.
In contrast to the hadronic case, where the directed flow remains constant after reaching its
maximum, in the case of a phase transition, the directed flow decreases again. By the time
the mean density drops below nuclear ground-state density, pdir

x /N is reduced to ≃ 0 MeV.
If one follows the fluid evolution even further (to unphysically small values of the density),
pdir

x /N becomes negative.

Figure 2: Net-baryon density R (for the same reaction as in Fig. 1) at t = 12 fm/c in the
reaction plane with velocity arrows for midrapidity (|y| < 0.5) fluid elements: Antiflow -
thin arrows, Normal flow - bold arrows.

This observation is explained by an antiflow component which develops when the ex-
pansion sets in. This phenomenon is shown in Fig. 2, which is a contour plot of the baryon
density R, with arrows indicating the fluid velocity. Normal flow (bold arrows) is positive

in the forward hemisphere, and negative in the backward hemisphere, respectively. On the
other hand, antiflow (thin arrows) is positive in the backward hemisphere, and negative in
the forward direction. We show velocity arrows for fluid elements within ±0.5 units around
midrapidity, since this phenomenon develops at midrapidity, as discussed in detail below.

4
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Directed Flow Excitation Function 

1-fluid/3-fluid Comparison 

Nµ
unified = ρ uµ, and the given EoS p = p(e, ρ). The local criterion for unification is

pi + pj

p
> 0.9 . (5)

Here, pi,j denotes the pressure in T µν
i,j , and p the pressure in T µν

unified. Eq. (5) has already been
used in [9] as a measure for the equilibration process.
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Figure 5: The excitation function of directed flow pdir
x /N for Au + Au collisions at impact

parameter b = 3 fm. Dotted lines are results from a one-fluid calculation; triangles are
for a purely hadronic EoS, circles are for an EoS with phase transition. Solid lines are
calculated with the three-fluid model, with (large circles) or without (small circles) dynamical
unification. All three-fluid calculations are performed with an EoS with phase transition.

Fig. 5 shows the excitation function of directed flow pdir
x /N calculated in the three-fluid

model in comparison to that obtained in a one-fluid calculation [2]. Due to non-equilibrium
effects in the early stage of the reaction, which delay the build-up of transverse pressure
[6, 9], the flow in the three-fluid model is reduced as compared to the one-fluid calculation
in the AGS energy range. Furthermore, the minimum in the excitation function of the
directed flow shifts to higher bombarding energies. The case without dynamical unification
yields the least amount of stopping and energy deposition, while the one-fluid calculation
has instantaneous full stopping and maximum energy deposition. The three-fluid model
with dynamical unification lies between these two limits; it accounts for the limited stopping

8

Importance of fluid unification 

• Shift of the flow minimum 
• Dissapearance of the 

minumum, if unification of 
the fluids is not included! 

• Minimum (softest point) in 
reach of NICA 

Brachmann, Phys.Rev. C61 (2000) 024909 
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Stopping and Rapidity Densities 

Proton rapidity spectra Midrapidity proton yields 

Ivanov, Phys.Lett. B690 (2010) 358-362 
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FIG. 1: Rapidity spectra of protons (for AGS energies) and
net-protons (p − p̄) (for SPS energies) from central collisions
of Au+Au (AGS) and Pb+Pb (SPS). Experimental data are
from collaborations E802 [1], E877 [2], E917 [3], E866 [4], and
NA49 [5–9]. The percentage shows the fraction of the total
reaction cross section, corresponding to experimental selec-
tion of central events. Solid lines connecting points represent
the two-source fits by Eq. (1). The dashed line is the fit to
old data on Pb(158A GeV)+Pb [5], these data themselves are
not displayed.

(at 158A GeV) ycm and a huge width ws. As a result, the
normalization of the net-proton rapidity distributions, as
calculated with fit (1), turns out to be 330 (at 80A GeV)
and 400 (at 158A GeV), which are considerably larger
than the total proton number in colliding nuclei (=164).
To avoid this problem, we performed a biased fit of these
data. An additional condition restricted the total nor-
malization of distribution (1) to be less than the total
proton number in colliding nuclei (=164). This biased fit
is the reason why the curve fitted to the new data at 158A
GeV does not perfectly hit the experimental points. In
particular, because of this problem we keep the old data
at 158A GeV [5] in the analysis. We also use old data
at 40A GeV, corresponding to centrality 7% [8], instead
of recently published new data at higher (5%) centrality
[9], since the data at the neighboring energies of 20A,
30A and 80A GeV are known only at centrality 7% [8].
Similarity of conditions, at which the data were taken,
prevents excitation functions, which are of prime interest
here, from revealing artificial irregularities.
Inspecting evolution of the spectrum shape with the in-

cident energy rise, we observe an irregularity. Beginning
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FIG. 2: Midrapidity reduced curvature of the (net)proton
rapidity spectrum as a function of the center-of-mass energy
of colliding nuclei as deduced from experimental data and
predicted by 3FD calculations with hadronic EoS (hadr. EoS)
[19] and a EoS involving a first-order phase transition into
the quark-gluon phase (2-ph. EoS) [20]. The thin dashed-
dotted line demonstrates the effect of the 2-ph. EoS without
changing the friction in the quark-gluon phase.

from the lowest AGS energy to the top one the shape of
the spectrum evolves from convex to slightly concave at
10AGeV. However, at 20AGeV the shape again becomes
distinctly convex. With the further energy rise the shape
again transforms from the convex form to a highly con-
cave one. In order to quantify this trend, we introduce
a reduced curvature of the spectrum in the midrapidity
defined as follows

Cy ≡

(

y3cm
d3N

dy3

)

y=ycm

/

(

ycm
dN

dy

)

y=ycm

= (ycm/ws)
2
(

sinh2 ys − ws cosh ys
)

. (2)

This curvature is defined with respect to the “di-
mensionless” rapidity (y − ycm)/ycm. The factor
1/ (ycmdN/dy)y=ycm

is introduced in order to get rid of
overall normalization of the spectrum, i.e. of the a pa-
rameter in terms of fit (1). The second part of Eq. (2)
presents this curvature in terms of parameters of fit (1).
Values of the curvature Cy deduced from fit (1) to ex-

perimental data are displayed in Fig. 2. To evaluate er-
rors of these deduced values, we estimated the errors pro-
duced by the least-squares method, as well as performed
fits in different the rapidity ranges: |y − ycm|/ycm < 0.5
and |y−ycm|/ycm < 0.9, where it is appropriate, and also
fits of the data at 80A GeV [8] and the new data at 158A
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FIG. 4: The same as in Fig. 3 but in conventional repre-
sentation (without multiplying by ycm) and in a wider energy
range including RHIC data on Au+Au collisions at 5% cen-
trality [26]. Proton data [7, 26] are also displayed.

6A GeV, where the purely hadronic scenario is realized.
The data at the top SPS energy are also reproduced,
which is achieved by a proper tune of the inter-fluid fric-
tion in the quark-gluon phase. Quality of the reproduc-
tion of above data is approximately the same as that
with the hadronic EoS, as it is, e.g., seen from Figs. 2
and from Fig. 3. However, at top AGS and lower SPS
energies (8A-80AGeV), where the mixed phase turns out
to be really important, the 2-ph. EoS completely fails.
The fact that the 2-ph.-EoS line perfectly hits 20A-40A-
GeV experimental points in Fig. 3 is just a coincidence,
shapes of the distributions are completely wrong, as seen
from Figs. 2. This failure cannot be cured by variations
of neither the friction nor the freeze-out criterion.

However, the Cy curvature energy dependence in the
first-order-transition scenario manifests qualitatively the
same “zig-zag” irregularity (Fig. 2), as that in the
data fit, while the hadronic scenario produces purely
monotonous behaviour. This “zig-zag” irregularity of
the first-order-transition scenario is also reflected in the
midrapidity values of the (net)proton rapidity spectrum
(Fig. 3). As for the experimental data, it is still diffi-
cult to judge if the “zig-zag” anomaly in the midrapid-
ity values is statistically significant. In the conventional
representation of the data (Fig. 4) without multiplying
by ycm, the irregularity of the (dN/dy)cm data is hardly
visible. However, the conventional representation clearly
demonstrates the overall trend of the data: the midra-
pidity net-proton yield gradually decreases with the in-

cident energy, while the proton one stays approximately
constant above the top SPS energy. Below the top SPS
energy the proton and net-proton yields practically coin-
cide. Model computations above the top SPS energy are
at present not feasible because of high memory consump-
tion required by the code (see discussion in Ref. [17]).
All above discussion concerns only central nuclear colli-

sions. Experimental data on midcentral collisions is much
less complete. The model calculations for midcentral col-
lisions (b ≈ 6 fm) reveal the same quantitative behaviour
of the excitation functions of Cy and (dN/dy)cm both for
hadr. EoS and 2-ph. EoS.
The baryon stopping depends on a character of inter-

actions (e.g., cross sections) of the matter constituents.
If during the interpenetration stage of colliding nuclei a
phase transformation1 of the hadronic matter into quark-
gluonic one happens, one can expect a change of the
stopping power of the matter at this time span. This
is a natural consequence of a change of the constituent
content of the matter because hadron-hadron cross sec-
tions differ from quark-quark, quark-gluon, etc. ones.
This can naturally result in a non-monotonous behaviour
of the shape of the (net)proton rapidity-spectrum at an
incident energy, where onset of the phase transition oc-
curs. Of course, the first-order transition does not hap-
pen abruptly. Within the Gibbs construction the fraction
of the quark-gluon phase is gradually increasing, as well
as weights of the corresponding cross sections. Therefore,
a non-monotonous behaviour will show up only if the dif-
ference in cross sections in the hadronic and quark-gluon
phases is large enough to override the above gradual in-
crease of the fraction of the new phase. In fact, this is
the case in the 3FD calculation with the phase transi-
tion (2-ph. EoS). The friction in the quark-gluon phase
was tuned to reproduce the data at the top SPS energy.
Naturally, it does not continuously match the friction in
the hadronic phase. In terms of parton-parton cross sec-
tions, these cross sections in the quark-gluon phase turn
out to be approximately twice as large as those in the
hadronic phase2. In the quark-gluon phase these cross
sections are compatible with those used, e.g., in a multi-
phase transport model [27] and a parton cascade model
[28].
Notice that the proton rapidity distribution at 158A

GeV is well described within the color-glass-condensate
framework based on small-coupling QCD [29]. This
mechanism drastically differs from that of hadronic stop-
ping. Therefore, it is not surprising that the 3FD model
requires very different (from the hadronic one) phe-
nomenological friction at the 158A-GeV energy to repro-
duce the data.

1 The term “phase transition” is deliberately avoided, since it usu-
ally implies thermal equilibrium.

2 In the hadronic phase this parton cross section corresponds to
the proton-proton one on the assumption of naive valence quark
counting.
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Coincides with mixed phase 5
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FIG. 5: Dynamical trajectories of the matter in the central
box of the colliding nuclei (4fm×4fm×γcm4fm), where γcm is
the Lorentz factor associated with the initial nuclear motion
in the c.m. frame, for central (b = 0) collisions of Au+Au
at 4A and 10A GeV energies and Pb+Pb at 20A GeV. The
trajectories are plotted in terms of baryon density (nB) and
the energy density minus nB multiplied by the nucleon mass
(ε−mNnB). Only expansion stages of the evolution are dis-
played for two EoS’s. Symbols on the trajectories indicate
the time rate of the evolution: time span between marks is 1
fm/c.

However, if even the same friction is used in both
phases, the calculated (with 2-ph. EoS) reduced cur-
vature still reveals a “zig-zag” behaviour but with con-
siderably smaller amplitude (see the thin dashed-dotted
line in Fig. 2). This happens because the EoS in a gener-
alized sense of this term, i.e. viewed as a partition of the
total energy between kinetic and potential parts, also af-
fects the stopping power. The friction is proportional to
the relative velocity of the counter-streaming nuclei [17].
Therefore, it is more efficient when the kinetic-energy
part of the total energy is higher, i.e. when the EoS is
softer. This effect of the softening was demonstrated in
Ref. [18]. It was shown that application of a soft, but still
hadronic EoS changes the rapidity distributions, making
them closer to the data at low SPS energies. This is pre-
cisely what the phase transition does: it makes the EoS
essentially softer in the mixed-phase region. The latter
naturally results in a non-monotonous evolution of the
proton rapidity spectra with the energy rise.
Figure 5 demonstrates that the onset of the phase tran-

sition in the calculations indeed happens at top-AGS–

low-SPS energies, where the “zig-zag” irregularity takes
place. Similarly to that it has been done in Ref. [30],
the figure displays dynamical trajectories of the matter
in the central box placed around the origin r = (0, 0, 0)
in the frame of equal velocities of colliding nuclei: |x| ≤ 2
fm, |y| ≤ 2 fm and |z| ≤ γcm 2 fm, where γcm is Lorentz
factor associated with the initial nuclear motion in the
c.m. frame. Initially, the colliding nuclei are placed sym-
metrically with respect to the origin r = (0, 0, 0), z is
the direction of the beam. The ε-nB representation is
chosen because these densities are dynamical quantities
and, therefore, are suitable to compare calculations with
different EoS’s. Subtraction of the mNnB term is taken
for the sake of suitable representation of the plot. Only
expansion stages of the evolution are displayed, where
the matter in the box is already thermally equilibrated.
The size of the box was chosen to be large enough that
the amount of matter in it can be representative to con-
clude on the onset of the phase transition and to be
small enough to consider the matter in it as a homo-
geneous medium. Nevertheless, the matter in the box
still amounts to a minor part of the total matter of col-
liding nuclei. Therefore, only the minor part of the total
matter undergoes the phase transition at 10A GeV en-
ergy. As seen, the trajectories for two different EoS’s are
very similar at AGS energies and start to differ at SPS
energies because of the effect of the phase transition.

IV. CONCLUSIONS

In conclusion, it is argued that the experimentally ob-
served baryon stopping may indicate (within the present
experimental uncertainties) a non-monotonous behaviour
as a function of the incident energy of colliding nuclei.
This reveals itself in a “zig-zag” irregularity in the exci-
tation function of a midrapidity reduced curvature of the
(net)proton rapidity spectrum. Notice that the energy
location of this anomaly coincides with the previously
observed anomalies for other hadron-production proper-
ties at the low SPS energies [21, 31]. The 3FD calculation
with the hadronic EoS fails to reproduce this irregularity.
At the same time, the same calculation with the EoS in-
volving a first-order phase transition into the quark-gluon
phase (within the Gibbs construction) [20] reproduces
this “zig-zag” behaviour, however only qualitatively. Pre-
liminary simulations with the EoS of Ref. [32], also based
on the first-order phase transition but within the Maxwell
construction, show the same qualitative trend. It is ar-
gued that the non-monotonous behaviour of the baryon
stopping is a natural consequence of a phase transition.
The question why these calculations do not qualitatively
reproduce the “zig-zag” irregularity deserves special dis-
cussion elsewhere. It is very probable that either the
Gibbs and Maxwell constructions are inappropriate for
the fast dynamics of the heavy-ion collisions [33, 34] or
the phase transition is not of the first order.
Fruitful discussions with B. Friman, M. Gazdzicki, J.

Ivanov, Phys.Lett. B690 (2010) 358-362 
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FIG. 5: (Color online) Energy scan of the slope of the directed
flow (dv1/dy) of protons for semicentral (b = 6 fm) Au+Au
collisions. We compare results for 3FH (black solid line),
THESEUS (blue short-dashed line) and THESEUS without
UrQMD hadronic rescattering (red long-dashed line) for the
2-phase EoS (a) and the crossover EoS (b). Data from the
AGS experiment E895 [48] are shown by filled squares, data
from the STAR beam energy scan [49] are given by star sym-
bols and a data point data from NA49 [50] by a filled triangle.

C. Baryon stopping signal for a first-order phase
transition

In Fig. 7 we show the reduced curvature of the net pro-
ton rapidity distribution (see App. B for the simulation of
the energy scan of the net proton rapidity distribution it-
self) C

y

= y

2

cm

(d3N
net�p

/dy

3)/(dN
net�p

/dy), where y

cm
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FIG. 6: (Color online) Energy scan of the slope of the directed
flow (dv1/dy) of pions for semicentral (b = 6 fm) Au+Au
collisions. We compare results for 3FH (black solid line),
THESEUS (blue short-dashed line) and THESEUS without
UrQMD hadronic rescattering (red long-dashed line) for the
2-phase EoS (a) and the crossover EoS (b). Data from the
STAR beam energy scan [49] are shown by star symbols.

is the rapidity of the center of mass of the colliding system
in the frame of the target [16, 56, 57]. Because of a nar-
rower collision energy range chosen here, we observe only
the peak-dip part of the so-called “peak-dip-peak-dip”
structure reported in [16, 56, 57]. The reduced curvature
is calculated by fitting the rapidity distribution with a
2nd order polynomial of the form P

2

(y) = ay

2 + by + c

for which then C

y

= y

2

beam

2a/c results.
Contrary to the basic 3FH model which can calculate

C

y

with any given precision, in the Monte Carlo proce-

P. B
atyuk et al, P

hys.R
ev. C

94 (2016) 044917 
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HYBRID APPROACHES 
UrQMD hybrid model as an example 
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Hybrid 
Approaches 

•  2D hydro +UrQMD 
S. Bass, A. Dumitru, M. Bleicher, 
Phys.Rev.C60:021902,1999 

•  NexSpherio 
F. Grassi, T. Kodama, Y. Hama, 
J.Phys.G31:S1041-S1044,2005 

•  3D Hydro+JAM 
T. Hirano, U. Heinz, D. Kharzeev, Y. Nara, 
Phys.Lett.B636:299-304,2006 

•  3D Hydro + UrQMD 
C. Nonaka, S.A. Bass, 
Nucl.Phys.A774:873-876,2006 

•  UrQMD 3.3 
H. Petersen, J. Steinheimer, M. Bleicher, 
Phys. Rev. C 78:044901, 2008 

•  EPOS+Hydro+UrQMD 
K. Werner, M. Bleicher, T. Pierog,  
Phys.Rev. C82 (2010) 044904 

•  MUSIC 
B. Schenke, S. Jeon, C. Gale, ... 
Nucl.Phys. A855 (2011) 303-306 

Combines relativistic 
hydrodynamics with 
relativistic Boltzmann 
equation. 
 
Phase transition 
proceeds in hydro stage 
 
Assumption:  
local equilibrium 
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UrQMD hybrid approach 
•  Initial State:  

–  Initialization of two nuclei 
–  Non-equilibrium hadron-string dynamics 
–  Initial state fluctuations are included naturally 

• 3+1d Hydro +EoS: 
–  SHASTA ideal relativistic fluid dynamics 
–  Net baryon density is explicitly propagated 
–  Equation of state at finit µB 

• Final State:  
–  Hypersurface at constant energy density 
–  Hadronic rescattering and resonance decays 

within UrQMD 

H.Petersen, et al, PRC78 (2008) 044901 
P. Huovinen, H. P. EPJ A48 (2012) 171 
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Initial State 
•  Contracted nuclei have passed 
through each other 

 
 

•  Energy is deposited 
•  Baryon currents have separated  

•  Energy-, momentum- and baryon 
number densities are mapped onto 
the hydro grid 

•  Event-by-event fluctuations are 
taken into account 

•  Spectators are propagated 
separately in the cascade  

(J.Steinheimer et al.,  
PRC 77,034901,2008) 

(nucl-th/0607018, nucl-th/0511021)  

Elab=40 AGeV 
b=0 fm 
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Time Evolution 
Central Pb+Pb collisions at 
40A GeV: 

• Number of particles 
decreases in the beginning 
due to resonance creation 

• Qualitative behaviour 
very similar in both 
calculations 

à UrQMD equilibrates to a 
rather large degree 



Equations of State 
Ideal relativistic one fluid dynamics: 
     and 

• HG: Hadron gas including the same degrees of freedom as 
in UrQMD (all hadrons with masses up to 2.2 GeV) 

• CH: Chiral EoS from quark-meson model with first order 
transition and critical endpoint 

• BM: Bag Model EoS with a strong first order phase 
transition between QGP and hadronic phase 
 D. Rischke et al.,  

NPA 595, 346, 1995, 

D. Zschiesche et al.,  
PLB 547, 7, 2002 

Papazoglou et al.,  
PRC 59, 411, 1999 

J. Steinheimer, et al.,  
JPG 38 (2011) 035001 
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Hadronization, Particlization, Decoupling 

Particlization 

• Experiment: finite number 
of hadrons in detectors  
(conservation laws!) 

• Hadronization controlled 
by the equation of state 

• Sampling of particles 
àCooper-Frye equation: 
 

 
• àE,p,t,x on hypersurface 

Sophisticated event-by-event  
3D hypersurface 

P
etersen, H

uovinen, arX
iv:1206.3371  
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Decoupling stage 

Collisions and decays 

•  Final propagation via 
Relativistic Boltzmann 
equation: 

• Substantial amount of 
final state interactions 

• Decoupling duration is on 
the order of 5 fm/c  
(central Au+Au/Pb+Pb) 

( ) collIfp =∂µ
µ
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3 minute break 
• Discuss with your neighbor  
 

problems at the interfaces between different stages 
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HYBRID APPROACHES 
Results 
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Hybrid model  
at LHC  
(Pb+Pb, 2.76 TeV) 

Excellent description of 
• centrality dependence 
• transverse momenta 
• elliptic flow. 

2

happens on a constant proper time hypersurface, where
the Cooper-Frye equation is applied on transverse slices
of thickness ∆z = 0.1−0.2 fm that have cooled down be-
low an energy density of 5ϵ0 ≈ 730 MeV/fm3 [36]. This
approach provides the full final phase space distributions
of the produced particles for each event and can be com-
pared to the pure transport approach by turning off the
hydrodynamic evolution which allows for a qualitative
study of viscous effects.
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FIG. 1: (Color online) Charged particle multiplicity at midra-
pidity (|η| < 0.5) as a function of the number of participants
in Pb+Pb collisions at

√
sNN = 2.76 TeV calculated in the

UrQMD transport and the hybrid approach compared to the
experimental data [1].

The first observable to look at is the charged particle
multiplicity at midrapidity. In Fig. 1 the calculation of
the centrality dependent multiplicity scaled by the num-
ber of participants (estimated in a Glauber approach) is
shown. The hadronic transport approach UrQMD pro-
vides a reasonable description of the multiplicity. For
central collisions the predictions published in [37] are
right on top of the ALICE data while with decreasing
centrality the number of charged particles is a little lower
than in the data. This fair agreement with the data hints
to the fact that the main particle production can be de-
scribed by the initial binary nucleon-nucleon interactions
treated by PYTHIA. The hydrodynamic evolution does
not affect the particle production. Since ideal hydrody-
namics implies an isentropic expansion this means that
the charged particle multiplicity is determined in the ini-
tial state and by the final resonance decays.

For the following calculations of spectra and collective
flow four different centrality classes have been chosen that
match the ones applied by the ALICE collaboration as
they are listed in the following table:
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FIG. 2: (Color online) Transverse momentum spectra of
charged particles for four different centralities calculated in
the UrQMD transport and the hybrid approach compared to
the available experimental data [2].

Centrality class Impact parameter range

0-5% b < 3 fm

5-10% b = 3− 5 fm

10-20% b = 5− 7 fm

20-40% b = 7− 10 fm

The transverse momentum spectrum for charged par-
ticles in the mentioned centrality classes are compared to
experimental data in the most central bin (see Fig. 2).
The main difference between the hybrid and the trans-
port calculation is in the slopes of the spectra. As ex-
pected the hydrodynamic evolution leads to a purely ex-
ponential pT dependence which describes the data until
pT < 3 GeV very well. At higher transverse momenta
the power law tail from hard processes becomes impor-
tant for a good agreement with the measured values. In
the range from 4 to 6 GeV the non-equilibrium descrip-
tion exemplified by the UrQMD calculation provides a
better description of the experimental data.

In Fig. 3 predictions for the transverse mass spec-
tra at midrapidity of pions, kaons and protons are pre-
sented. The pion spectra are very similar to the charged
particle spectra since they represent the major fraction
of the newly produced particles in the collision. Kaons
are strange mesons and protons are chosen because they
have a higher mass and are baryonic degrees of freedom.
The general features of the transverse mass spectra are
similar to the ones observed at RHIC and imply a col-
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the Cooper-Frye equation is applied on transverse slices
of thickness ∆z = 0.1−0.2 fm that have cooled down be-
low an energy density of 5ϵ0 ≈ 730 MeV/fm3 [36]. This
approach provides the full final phase space distributions
of the produced particles for each event and can be com-
pared to the pure transport approach by turning off the
hydrodynamic evolution which allows for a qualitative
study of viscous effects.
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FIG. 1: (Color online) Charged particle multiplicity at midra-
pidity (|η| < 0.5) as a function of the number of participants
in Pb+Pb collisions at

√
sNN = 2.76 TeV calculated in the

UrQMD transport and the hybrid approach compared to the
experimental data [1].

The first observable to look at is the charged particle
multiplicity at midrapidity. In Fig. 1 the calculation of
the centrality dependent multiplicity scaled by the num-
ber of participants (estimated in a Glauber approach) is
shown. The hadronic transport approach UrQMD pro-
vides a reasonable description of the multiplicity. For
central collisions the predictions published in [37] are
right on top of the ALICE data while with decreasing
centrality the number of charged particles is a little lower
than in the data. This fair agreement with the data hints
to the fact that the main particle production can be de-
scribed by the initial binary nucleon-nucleon interactions
treated by PYTHIA. The hydrodynamic evolution does
not affect the particle production. Since ideal hydrody-
namics implies an isentropic expansion this means that
the charged particle multiplicity is determined in the ini-
tial state and by the final resonance decays.

For the following calculations of spectra and collective
flow four different centrality classes have been chosen that
match the ones applied by the ALICE collaboration as
they are listed in the following table:
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FIG. 2: (Color online) Transverse momentum spectra of
charged particles for four different centralities calculated in
the UrQMD transport and the hybrid approach compared to
the available experimental data [2].

Centrality class Impact parameter range

0-5% b < 3 fm

5-10% b = 3− 5 fm

10-20% b = 5− 7 fm

20-40% b = 7− 10 fm

The transverse momentum spectrum for charged par-
ticles in the mentioned centrality classes are compared to
experimental data in the most central bin (see Fig. 2).
The main difference between the hybrid and the trans-
port calculation is in the slopes of the spectra. As ex-
pected the hydrodynamic evolution leads to a purely ex-
ponential pT dependence which describes the data until
pT < 3 GeV very well. At higher transverse momenta
the power law tail from hard processes becomes impor-
tant for a good agreement with the measured values. In
the range from 4 to 6 GeV the non-equilibrium descrip-
tion exemplified by the UrQMD calculation provides a
better description of the experimental data.

In Fig. 3 predictions for the transverse mass spec-
tra at midrapidity of pions, kaons and protons are pre-
sented. The pion spectra are very similar to the charged
particle spectra since they represent the major fraction
of the newly produced particles in the collision. Kaons
are strange mesons and protons are chosen because they
have a higher mass and are baryonic degrees of freedom.
The general features of the transverse mass spectra are
similar to the ones observed at RHIC and imply a col-
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FIG. 3: (Color online) Transverse mass spectra of negative
pions (top), positive kaons (middle) and protons (bottom) for
four different centralities calculated in the hybrid approach
with two different equations of state.

lective radial velocity that drives all the particle species.
The two different equations of state lead to very similar
results with the deconfinement transition having a little
steeper slope due to the more rapid expansion due to the
higher pressure in the quark gluon plasma phase.

After proving a rather successful agreement with basic
quantities like the multiplicity and transverse momen-
tum spectrum the next step is to look at anisotropic
flow observables. The elliptic flow has been calculated
with respect to the reaction plane by averaging over all
charged particles in all events to be compared to the
ALICE measurement that relies on the four-particle cu-
mulant method in two centrality bins. Fig. 4 shows a
good agreement between the hybrid calculations and the
data, especially between pT=0.8-2.5 GeV. In the very
low transverse momentum region the hybrid approach
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FIG. 4: (Color online) Elliptic flow of charged particles as a
function of transverse momentum for four different centralities
calculated in the hybrid approach with two different equations
of state compared to the experimental data[3].

underpredicts the data which has been observed in other
calculations as well [14]. At higher pT again the influence
of hard processes needs to be taken into account.
To quantify the shape of the initial conditions em-

ployed for the hydrodynamic calculation and its event-
by-event fluctuations Fig. 5 shows the probability distri-
bution of the coordinate space asymmetry characterized
by the eccentricity and the triangularity as defined in
[25]. The initial ϵn coefficients have been calculated in
each event and the normalized probability distribution is
plotted for two different centrality bins.
For central collisions the mean value and the shape of

the distributions are very similar for the participant ec-
centricity and the triangularity since both of them are
mainly generated by fluctuations. For more peripheral
collisions the eccentricity is influenced by a large geome-
try component due to the ellipsoidal shape of the initial
state in the transverse plane. Therefore, the mean ec-
centricity is larger and the fluctuations increase leading
to a wider distribution, whereas the triangularity stays
smaller and the distribution has a smaller width.
Since the triangularity has been introduced because of

its sensitivity to initial state fluctuations the higher mul-
tiplicity at LHC energies triggers the expectations that
the fluctuations become smaller compared to RHIC en-
ergies. In Fig. 5 the triangles and diamonds depict the
eccentricity and triangularity calculation from UrQMD
initial conditions for Au+Au collisions at Ecm = 200A
GeV. Surprisingly, the ϵn distributions match almost ex-
actly the ones at LHC energies for the two similar cen-

chiral vs HG-EoS 

H. Petersen, Phys.Rev. C84 (2011) 034912  
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• Energy-, momentum- and baryon number densities are 
mapped onto the hydro grid using for each particle

 

• Changing " leads to different granularities, but also 
changes in the overall profile

• How does changing the starting time affect the picture?

Initial State at RHIC
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Initial State   



Marcus Bleicher, ZAPF 2010 

Idea: Angular correlation 
HISS-2018, Dubna 36 



Sources of Fluctuations 

•  Granularity is driven by 
•   position of nucleons 
•   distribution of collisions 
•   type of interaction 
•   degree of thermalization 

•  How to quantify the fluctuating shape of the initial state? 
 à Fourier-expansion in position space 

UrQMD @ 
200 AGeV 

+ + + + 
⋯ 

= ε2 ε5 ε4 ε3 
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Anisotropic Flow –  
Higher Order Fourier Coefficients 

Simplified picture: 

Position-space anisotropy  
à Momentum-space anisotropy 

 

Use these coefficients to learn about the initial state 

Real picture: 
Complicated state, 
mean free paths,… 

by MADAI.us 

HISS-2018, Dubna 38 

From H. Petersen 



Constraining Granularity 

Hannah Petersen NeD/TURIC, 06/27/2012

Constraining Granularity

• Triangular flow is very sensitive to 
amount of initial state fluctuations

• It is important to have final state particle 
distributions to apply same analysis as in 
experiment

• Single-event initial condition provides 
best agreement with PHENIX data

• Does that imply that the initial state is 
well-described by binary nucleon 
interactions +PYTHIA? 

• Lower bound for fluctuations!
18

H.P. et al, J.Phys.G G39 (2012) 055102
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Use Photons to Learn More 
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Photons: Direct Messengers from the QGP 

à  from QGP: sensitivity to parton density and temperature 
à  from initial state: sensitivity to PDFs  (gluon!) 
à  Compare to hadronic channels, i.e. π+ρàγ+π, …

 
Cross section Refs 
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Photon Rates: Hadronic and Partonic 

• Hadronic rate parametrization: 

• QGP rate: 
 

4

may differ between the hybrid approach and the binary
scattering model. Emission from a Quark-Gluon-Plasma
can only happen in the hydrodynamic phase, and only if
the Equation of State used has partonic degrees of free-
dom. Photons from baryonic interactions are neglected in
the present calculation. Emission of hard photons from
early pQCD-scatterings of nucleons is calculated sepa-
rately and incoherently added to the simulated spectra.

A. Photons from microscopic collisions

In the transport part of the (hybrid) model, each scat-
tering is examined and the cross-section for photon emis-
sion is calculated. Here, we employ the well-established
cross-sections from Kapusta et al. [11] and Xiong et

al. [12]. Kapusta and collaborators based their calcula-
tions on the photon self-energy derived from a Lagrange
density involving the pion, ρ and photon-fields

L = |DµΦ|2−m2
π|Φ|2−

1

4
ρµνρ

µν+
1

2
m2

ρρµρ
µ−

1

4
FµνF

µν .

(1)
Here, Φ is the pion field, ρµν = ∂µρν−∂νρµ and Fµν =

∂µAν − ∂νAµ are the ρ and photon field-strength tensors
and Dµ = ∂µ − ıeAµ − ıgρρµ is the covariant derivative.
The ρ decay constant gρ is calculated from the total width
Γρtot of the ρ meson:

g2ρ = 48π
Γρtotm

2
ρ

(√

m2
ρ − 4m2

π

)3
. (2)

The differential cross-sections used for the present in-
vestigation [11, 12] are given in Appendix D.
All scatterings during the transport phase are exam-

ined in order to obtain direct photon spectra. For every
scattering that may produce photons (i.e. those that have
initial states equal to the processes listed in Appendix D),
the corresponding fraction of a photon,

Nγ =
σem

σtot
, (3)

is produced. Here, σtot is the sum of the total hadronic
cross-section for a collision with these ingoing particles
(as provided by UrQMD) and the electromagnetic cross-
section σem as calculated by the aforementioned formulæ.
In order to obtain the correct angular distribution of the
produced photons and to enhance statistics, for each scat-
tering many fractional photons are created that populate
all kinematically allowed momentum transfers t. In this
procedure, each photon is given a weight ∆N t

γ according
to

∆N t
γ =

dσem

dt (s, t)∆t

σtot(s)
, (4)

and the photons are distributed evenly in the azimuthal
angle ϕ. The integral σem(s) =

∫

dσem/dtdt is performed
analytically for each channel. The resulting formulæ are
shown in Appendix E.

Since the width of the ρ-meson is not negligible, its
mass distribution has to be taken into account. For the
processes with a ρ-meson in the initial state, the actual
mass mρ =

√
pµpµ of the incoming meson is used for

the calculation of the cross-section. If there is a ρ-meson
in the final state, then first the mass of the ρ is chosen
randomly according to a Breit-Wigner distribution with
mass-dependent width. This mass is then used for all
further calculations of this process. Figure 4 shows the
cross-sections of the channels listed above as a function
of

√
s.

B. Photons from hydrodynamics

In the hydrodynamic phase photons are produced frac-
tionally from every cell on the hydrodynamic grid whose
energy density is above a threshold εthr = 10−12 ε0 using
the parametrizations by Turbide, Rapp and Gale [57].
They use an effective non-linear σ-model Lagrange den-
sity in which the vector and axial vector fields are im-
plemented as massive gauge fields of the chiral U(3)L ×
U(3)R symmetry to obtain the rates. For details on this
ansatz, the reader is referred to the original publication
[57].

As mentioned earlier, the processes calculated by Tur-
bide et al. differ from those considered by Kapusta et al.
Only the processes ππ → γρ and πρ → γπ are therefore
common in both models. The rate of Turbide et al. for
πρ → γπ directly includes the process with an interme-
diate a1-meson.

To simplify the calculations, all photon rates in [57]
are parametrized by the general form

E
dR

d3p
= A exp

(

B

(2ET )C
−D

E

T

)

, (5)

where A, B, C and D are linear functions of some power
of the temperature T : A(T ) = A1 + A2TA3 . The pa-
rameter set can be obtained from [57]. In the rates, the
energy E and temperature T are to be given in units of
GeV, and the result will have the unit GeV−2 fm−4. We
also employ the hadronic form factor introduced in [57].

In the Quark-Gluon-Plasma, the rate used is taken
from Ref. [58]. They computed the full leading-order
result as

Insert all rates into the hybrid model and compare to data. 

S. Turbide, R. Rapp, C. Gale,  
Phys. Rev. C69 (2004) 014903 
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FIG. 4: (Color Online.) Cross-sections for all included channels as a function of
√
s. For visibility, the cross-sections for all

processes πρ → γπ are shown separately. They have been calculated with a ρ mass mρ = 0.769 GeV. The left plot shows the
cross-sections for ππ → γρ both for fixed ρ mass (mρ = 0.769 GeV, labelled “mρ fixed”) and for variable ρ mass (labelled “mρ

Breit-Wigner”).

E
dR

d3p
=

Nf
∑

i=1

q2i
αemαS

2π2
T 2 1

ex + 1

(

ln

(√
3

g

)

+
1

2
ln (2x) + C22(x) + Cbrems(x) + Cann(x)

)

, (6)

and give convenient parametrizations for the contribution of 2 ↔ 2-, bremsstrahlung- and annihilation-processes (C22,
Cbrems and Cann, respectively)

C22(x) = 0.041x−1 − 0.3615 + 1.01 exp (−1.35x) (7a)

Cbrems(x) + Cann(x) =

√

1 +
Nf

6

[

0.548 ln
(

12.28 + 1
x

)

x
3
2

+
0.133x

√

1 + x
16.27

]

. (7b)

In Equations (6) and (7), x = E/T , qi is the charge of
quark-flavour i, αem and αS = g2/4π are the electromag-
netic and QCD coupling constants, respectively. In our
calculations, we use Nf = 3, and therefore

∑

i q
2
i = 2/3.

The temperature dependence of αS is taken from [59] as

αS(T ) =
6π

(33− 2Nf) ln
(

8T
TC

) , (8)

and the critical temperature at µB = 0 to be TC =
170 MeV.

C. Photons from primordial pQCD-scatterings

At high transverse momenta, a major contribution to
the photon yield is the emission of photons from hard
pQCD-scatterings of the partons in the incoming pro-
tons. In the intermediate and low p⊥-regions, the contri-
bution may be comparable to or smaller than the yield
from other sources.

We apply the results extracted by Turbide et al. [57].
They first scale the photon spectrum from proton-proton-
collisions by the number of binary collisions in Pb+Pb-
collisions, and then add a Gaussian-shaped additional
k⊥-smearing to the result. The width of the Gaussian
is obtained by fitting this procedure to the data from
proton-nucleus collisions. The results shown here are ob-

P. Arnold, G. Moore, L. Yaffe,  
JHEP 0112 (2001)009 
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Temperature and dof: Photons 

l  Clear separation 
hadronic vs. partonic 

l  partonic calc. fit data 
l  Reasons for missing 

contributions in 
UrQMD/Hadron gas: 
- late equilibration,  
- hadronic rates, 
- shorter life time 

Data points from: 
PHENIX, PRC 81 (2010) 034911 
fig: Bäuchle, MB, PRC 82 (2010) 064901 
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FIG. 47: (Color online) Theoretical calculations of thermal
photon emission [88, 90, 91, 92, 93, 94] are compared with the
direct photon data in central 0-20% Au + Au collisions shown
separately and added to pQCD calculations. In contrast to
the others, the curve by [94] includes pQCD contributions.
The black solid curve show the pQCD calculation, scaled by
TAA. The QCD scale µ is set to pT for this calculation. The
two black dashed curves around the black solid curve show the
scale uncertainty, with the upper curve and the lower curve
corresponds to µ = 1/2 · pT and µ = 2 · pT , respectively.
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FIG. 48: (Color online) Tinit vs. τ0 for various theoretical
calculations shown in Fig. 47.
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APPENDIX A: BACKGROUND
NORMALIZATION

1. Pairing of Electrons and Positrons

In the following we assume that, as dictated by the
charge conservation law, e− and e+ are always produced
in pairs and that most of these pairs are produced statis-
tically independent of each other. Let us say N pairs are
produced in a particular event and N is given by a prob-
ability distribution P (N). Of the N pairs only a fraction
εp is fully reconstructed, and then the number of recon-
structed pairs np is given by a binomial distribution B
sampling out of N “events” with a probability εp.

• Probability to get np pairs from N true pairs:
ω(np) = B(np, N, εp)

• with an average: ⟨np⟩ = εpN

• and variance: σ2
p = εpN(1 − εp)

Of the remaining pairs one track is reconstructed with
a probability ε+ or ε−. For a given N and np the num-
ber of additional single positive tracks n+ and negative
tracks n− follow a multinomial distribution M with three
possible outcomes for each of the N−np unreconstructed
pairs: no track, one + track or one − track.

The probability to get n+ and n− single tracks from N
true pairs with np reconstructed pairs, i.e., from (N−np)
not fully reconstructed pairs is:

ω(n+, n−) = M(n+, n−; N − np, ε+, ε−)

ω(n+) =

N−np
∑

n−=1

M(n+, n−; N − np, ε+, ε−)

ω(n−) =

N−np
∑

n+=1

M(n+, n−; N − np, ε+, ε−) (A1)

• with average: ⟨n±⟩ = ε±(N − np)

• variance: σ2
± = ε±(N − np)(1 − ε±)

HISS-2018, Dubna 
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FIG. 47: (Color online) Theoretical calculations of thermal
photon emission [88, 90, 91, 92, 93, 94] are compared with the
direct photon data in central 0-20% Au + Au collisions shown
separately and added to pQCD calculations. In contrast to
the others, the curve by [94] includes pQCD contributions.
The black solid curve show the pQCD calculation, scaled by
TAA. The QCD scale µ is set to pT for this calculation. The
two black dashed curves around the black solid curve show the
scale uncertainty, with the upper curve and the lower curve
corresponds to µ = 1/2 · pT and µ = 2 · pT , respectively.
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FIG. 48: (Color online) Tinit vs. τ0 for various theoretical
calculations shown in Fig. 47.
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APPENDIX A: BACKGROUND
NORMALIZATION

1. Pairing of Electrons and Positrons

In the following we assume that, as dictated by the
charge conservation law, e− and e+ are always produced
in pairs and that most of these pairs are produced statis-
tically independent of each other. Let us say N pairs are
produced in a particular event and N is given by a prob-
ability distribution P (N). Of the N pairs only a fraction
εp is fully reconstructed, and then the number of recon-
structed pairs np is given by a binomial distribution B
sampling out of N “events” with a probability εp.

• Probability to get np pairs from N true pairs:
ω(np) = B(np, N, εp)

• with an average: ⟨np⟩ = εpN

• and variance: σ2
p = εpN(1 − εp)

Of the remaining pairs one track is reconstructed with
a probability ε+ or ε−. For a given N and np the num-
ber of additional single positive tracks n+ and negative
tracks n− follow a multinomial distribution M with three
possible outcomes for each of the N−np unreconstructed
pairs: no track, one + track or one − track.

The probability to get n+ and n− single tracks from N
true pairs with np reconstructed pairs, i.e., from (N−np)
not fully reconstructed pairs is:

ω(n+, n−) = M(n+, n−; N − np, ε+, ε−)

ω(n+) =

N−np
∑

n−=1

M(n+, n−; N − np, ε+, ε−)

ω(n−) =

N−np
∑

n+=1

M(n+, n−; N − np, ε+, ε−) (A1)

• with average: ⟨n±⟩ = ε±(N − np)

• variance: σ2
± = ε±(N − np)(1 − ε±)

HISS-2018, Dubna 



Is there QGP? 

Bauechle, Bleicher, Phys.Rev. C81 (2010) 044904 

Hybrid, QGP: Channels Comparisons 
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3 minute break 
• Discuss with your neighbor  
 

how to measure the life time of the fireball 
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HBT Correlations 

Hanbury-Brown-Twiss Correlations 
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HBT correlations: Idea 

Bose-Einstein-statistics leads to short range  
correlations of bosons in momentum 
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(R. Hanbury-Brown, R.Q. Twiss, 1956) 
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From M. Lisa 



qout 

qside 

qlong 

Meaning of Components 
R

si
de

 

Rout 

x1 

x2 

p1 

p2 

q!

•  Two particle interferometry: Image and emission duration 

Rside 

Rout 

Pratt-Bertsch (“out-side-long”) 
coordinanates allow to obtain 
space and time information 

Rout/Rside-ratio measures 
emission time of the system 
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Au+Au Au+Au 

1-fluid Hydro Prediction 
•  Mixed phase should lead to drastic increase 

in life time, visible in R_o/R_s ratio 

From: Rischke, Gyulassy, 
Nucl.Phys.A608:479-512,1996  

• 10 times increased life 
time 

•  Factor 2-4 increased 
 Rout/Rside ratio 

~ beam energy  
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HBT radii à Lifetime 
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Hydro evolution leads to larger radii, esp. with phase transition 
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RO/RS Ratio 
•  Hydro phase leads to 

smaller ratios  
•  Hydro to transport 

transition does not 
matter, if final 
rescattering is taken 
into account 

•  EoS dependence is 
visible, but not as 
strong as previuosly 
predicted (factor of 5) 

Data from NA49 
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Q. Li et al., Phys.Lett. B674 (2009) 111-116 



53 

Summary: Hydro and Hybrid Models 

• Hybrid approaches 
have become the 
„Standard Model“ for 
Heavy Ion collisions 

• Can not be used at 
low energies, because 
initial/intermediate 
state separation is not 
well defined 

• Angular correlations 
constrain initial state 

• Photon yields support 
the existence of QGP  

• HBT correlations may 
indicate increased life 
times  

HISS-2018, Dubna 
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3 minute break 
• Discuss with your neighbor  
 

Is there a (simple) alternative to hydro/hybrid 
transport to explore in-medium effects/phase 
transitions? 
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COARSE GRAINING 
Results 
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Hadronic models 
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Motivation Theoretical Approaches Coarse-Graining NA60 SIS 18 RHIC & LHC FAIR Outlook

Hadronic Models

1 Kinetic theory
Realized in transport models (here UrQMD)
E↵ective solution of the Boltzmann equation
Physics input and parameters: cross-sections (total and
partial), resonance parameters, string fragmentation scheme
“On-shell” quasi-particles on classical trajectories
Collision term includes elastic & inelastic scatterings (e.g.
⇡⇡ ! ⇢) and resonance decays (e.g. N⇤ ! N + ⇡)

,! But: Incoherent summation over processes, missing o↵-shell
dynamics, restricted to lower densities (no multi-particle
interactions) ! Medium e↵ects only partially implemented

2 Hadronic many-body theory
Calculate particle self-energies using quantum field theory
Coherent summation: Accounts for quantum interference

,! But: Restricted to equilibrated matter, assumes heat bath

! Two sides of the same medal!
5 / 24



Coarse graining 
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The Idea: Coarse-Graining

Goal: One approach for all energies, realistic evolution of the
reaction, but limited number of variables
,! Combining a realistic 3+1 dimensional microscopic expansion

of the system with macroscopic description of the dilepton
emission

Coarse-graining = Reduction of information ! System
uniquely determined by (local) energy and particle densities
Microscopic description ! Necessary to average over many
simulation events
Su�ciently large number of events ! Distribution function
f (~x ,~p, t) takes a smooth form

f (~x ,~p, t) =

*
X

h

�3(~x � ~
xh(t))�

3(~p � ~
ph(t))

+

UrQMD model constitutes a non-equilibrium approach
,! Equilibrium quantities have to be extracted locally at each

space-time point
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Coarse graining 
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Coarse-Graining

First proposed by Huovinen et al. [Phys. Rev. C66, 014903 (2002)]

Put ensemble of UrQMD events on grid of space-time cells
Determine baryon and energy density and use Eckart’s
definition to determine the rest frame properties
! Use equation of state to calculate T and µB

Two EoS: Free hadron gas with UrQMD-like degrees of
freedom + Lattice EoS for T > 170 MeV
[D. Zschiesche et al., Phys. Lett. B547, 7 (2002); M. He et al., Phys. Rev. C 85 (2012)]
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Advantages 
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Where is the advantage?
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Au+Au @ 2 AGeV (0-10%)

central cell
x=y=z=0

UrQMD
SMASH

0ε/εEnergy density 

0ρ/BρBaryon density 

BµBaryochemical potential Temperature T

Robustness of the evolution ! Microscopic details di↵er,
but evolution of energy and particle densities similar
Medium e↵ects straightforward in terms of T and µB $
But: Assumption of local equilibrium necessary
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Accounting for non-equilibrium 
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Accounting for Non-Equilibrium

! To which extent is equilibrium obtained in the dynamics?

! How can one deal with deviations from equilibrium?

Macroscopic descriptions ! Equilibrium usually introduced
as ad-hoc assumption

Transport models ! Non-equilibrium normal case at any
stage

Two aspects have to be taken into account:
1 Kinetic non-equilibrium ! momentum-space anisotropies
2 Chemical non-equilibrium ! overdense pionic system

! finite pion chemical potential µ⇡

) Calculate “e↵ective” energy density and determine µ⇡ in
Boltzmann approximation
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Di-lepton emission 
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Dilepton & Photon Rates

Emission is calculated for each cell of 4-dim. grid
Electromagnetic emission is related to the imaginary part
of the retarded current-current correlator ⇧(ret)

em as
[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

dNll

d4xd4q
= �↵2

emL(M)

⇡3
M

2
fB(q;T )⇥ Im ⇧(ret)

em (M,~q;µB,T ),

q0
dN�

d4xd3q
= �↵em

⇡2
fB(q;T )⇥ Im ⇧T ,(ret)

em (q0 = |~q|;µB,T ).

Include ⇢ and ! spectral functions from HMBT (Rapp et al.),
meson gas contributions and lattice rates for the QGP
Non-thermal dilepton contributions (⇡, ⌘, �) directly from
UrQMD + freeze-out ⇢ and ! (if T < 50MeV)

,! For more details about the CG-approach see PRC 91, 054911 (2015);

PRC 92, 014911 (2015) and PRC 93, 054901 (2016)
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Baseline comparison at SPS 
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Baseline comparison for SPS / NA60 [S.E. et al., Phys. Rev. C 91, 054911 (2015)]
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The coarse-graining of UrQMD input gives realistic and
nuanced picture of the collision evolution ! Detailed
space-time description of temperature and chemical potential
At SPS one reaches temperatures significantly above Tc in
combination with moderate values of µB

Note: Right plot shows maxima of T and µ (central cell), not
average ! Di↵erent values for each space-time cell!
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NA60 – di-lepton spectra 
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NA60 - Dilepton Spectra
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⇢ shows broadening compared to case without baryons
QGP and multi-pion annihilation are the relevant sources in
the intermediate mass region
For M > 1.5 GeV/c2 QGP contribution clearly dominates
Duality between hadronic and partonic emission rates?

,! Results agree with fireball + hydro calculations; di↵erences in
dynamics
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Comparison of different spectral functions 
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NA60 - Comparison of Spectral Functions
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HMBT results $ ⇢ spectral function obtained using empirical
scattering amplitudes from resonance dominance
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

Not enough broadening due to low-density expansion of the
self energies ! Overshoots data at peak, underestimates for
lower masses
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SIS 18, low T, high µB 

HISS-2018, Dubna 65 
Motivation Theoretical Approaches Coarse-Graining NA60 SIS 18 RHIC & LHC FAIR Outlook

SIS 18 - Low T , highest µ
B

[S.E. et al., Phys. Rev. C 92, 014911 (2015)]
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Very slow evolution of the fireball
,! T and µB remain roughly constant for up to 20 fm/c!

Moderate temperatures and very high baryon density
respectively baryochemical potential ! Ideal situation to
study in-medium modifications
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HADES vs. c.g. UrQMD 
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SIS 18 - Dilepton Spectra from HADES
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Significant in-medium broadening of the ⇢ spectral
function, causing a strong increase of the dilepton yield below
the pole mass
Low-mass enhancement increases with system size
Low temperatures ! Higher masses and pole mass peak
suppressed
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FAIR and photons 
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FAIR - What are the perspectives? [S.E. et al., Phys. Rev. C 93, 054901 (2016)]
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Summary: Coarse graining 

• Allows to employ QFT 
in the analysis 

• Alternative to hybrid 
and 3-fluid at low 
energies.  

• No EoS in the 
dynamics, but in the 
emission rates. 

• Works excellent for 
leptons 

• Photon yields support 
the existence of QGP  

• Charm studies under 
way 

HISS-2018, Dubna 

68 



CHIRAL HYDRODYNAMICS 
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Aim: Explore signals for QCD first order phase transition and critical end point 

Model: Ideal quark fluid coupled to Polyakov-quark-meson model 

Propagate chiral fields and Polyakov loop explicitly via Langevin equations of motion 

Energy-momentum exchange between fields and fluid described by source terms 

M.Nahrgang, S.Leupold, C.Herold, M.Bleicher, PRC 84 (2011); M.Nahrgang, S.Leupold, M.Bleicher, PLB 711 (2012); M.Nahrgang, 
C.Herold, S.Leupold, M.Bleicher, I.Mishustin arXiv:1105.1962 

Nonequilibrium Chiral Fluid Dynamics (NχFD, PNχFD) 

Solve with 3+1 dim. hydro, using SHASTA and staggered leap frog for the fields 

HISS-2018, Dubna 
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CP vs. 1st order by adjustment of g 

Effective potential for 1st order PT: 
Tc=173 MeV, g=4.7 
 

Effective potential for CP:  
Tc=180 MeV, g=3.5 

àfirst step: vanishing baryon chemical potential, second step: full calculation 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013) 

6

first two being proportional to ℓ. This means that for vanishing value of the Polyakov loop only
three-quark states contribute, while the amount of one- and two-quarks gets larger with growing ℓ.
This is called “statistical confinement” [52]. In (10), we omit the zero-temperature contribution to
Ωqq̄ which can partly be renormalized into the parameters λ2 and ν2, leaving a logarithmic term
depending on the renormalization scale and the effective quark mass. This term may have crucial
influence on the phase structure of the model [10, 53]. However, as the mean-field approximation
provides us with the desired phase transition already [6], we neglect this term and its effects in
the following. In order to simplify the calculations and for a first qualitative study we follow the
same strategy as in [33–35]. Varying the coupling strength g one can tune the characteristic shape
of the effective potential Veff at µB = 0 and by that the type of transition: For g = 4.7 we see
two degenerate minima (σ = 9 MeV, ℓ = 0.40) and (σ = 81 MeV, ℓ = 0.22) at the transition
temperature of Tc = 172.9 MeV, see fig. 1. While for g = 3.52 we have only one single minimum
(σ = 49 MeV, ℓ = 0.43) at Tc = 180.5 MeV, where the potential is very broad and flat as shown in
fig. 2. This resembles a CP. Note that in principle one has to choose g such that the product gσ
in vacuum reproduces the constituent quark mass, which leads to a value of g = 3.3.

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  20  40  60  80  100

Po
ly

ak
ov

-lo
op

σ/MeV

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

V e
ff/

T4

FIG. 1. Effective potential for g = 4.7, cor-
responding to a first order phase transition at
Tc = 172.9 MeV.
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FIG. 2. Effective potential for g = 3.52, corre-
sponding to a CP scenario at Tc = 180.5 MeV.

C. The equations of motion

In [34] we have derived the coupled dynamics of the sigma field and the quark fluid self-
consistently with the two particle irreducible (2PI) effective action for an analogous model without
Polyakov loop. The description of nonequilibrium processes can be achieved via Langevin equa-
tions. This has been extensively done in a quantum field theoretical framework for φ4 theory
[54–57], gauge theories [58, 59] and O(N) chiral models [60]. Here, a splitting between the long-
and short-wavelength modes of the sigma field was assumed and the relaxational dynamics of the
soft modes in the heat bath of hard modes was derived within the influence functional formalism.
Utilizing a chiral model with constituent quarks, we assumed a different splitting. Taking the
quarks as the environmental degrees of freedom and the sigma as the relevant degrees one can
calculate the 2PI effective action by integrating over the Keldysh contour. Out of that we were
able to derive a Langevin equation of motion containing friction and noise1.

1 In this form the equation of motion is not Lorentz invariant. The problem could be cured by replacing ησ∂tσ →

ησu
µ∂µσ.
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C. The equations of motion

In [34] we have derived the coupled dynamics of the sigma field and the quark fluid self-
consistently with the two particle irreducible (2PI) effective action for an analogous model without
Polyakov loop. The description of nonequilibrium processes can be achieved via Langevin equa-
tions. This has been extensively done in a quantum field theoretical framework for φ4 theory
[54–57], gauge theories [58, 59] and O(N) chiral models [60]. Here, a splitting between the long-
and short-wavelength modes of the sigma field was assumed and the relaxational dynamics of the
soft modes in the heat bath of hard modes was derived within the influence functional formalism.
Utilizing a chiral model with constituent quarks, we assumed a different splitting. Taking the
quarks as the environmental degrees of freedom and the sigma as the relevant degrees one can
calculate the 2PI effective action by integrating over the Keldysh contour. Out of that we were
able to derive a Langevin equation of motion containing friction and noise1.

1 In this form the equation of motion is not Lorentz invariant. The problem could be cured by replacing ησ∂tσ →

ησu
µ∂µσ.
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Box calculations: sigma equilibration 

1st order PT, Tc=173 MeV:  
Equilibration sigma-field for several 
temperature quenches (Tini=180 MeV) 

CP, Tc=180 MeV:  
Equilibration sigma-field for several 
temperature quenches (Tini=186 MeV) 
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loop field at their equilibrium values including thermal fluctuations with a variance given by
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Here we have defined the mass of the Polyakov loop mℓ analogously to the sigma mass as
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We then quench the temperature to various values T < Tc and initialize the quark heat bath by
calculating its energy density and pressure out of the given quantities T , σ, ℓ via equation (21).
After that we let the system evolve according to equations (11), (16) and (23). Fields and fluid
now influence each other in the following way: The amount of energy that the fields lose through
damping gets transferred to the fluid which causes an adjustment of the temperature on account of
equation (32). This new temperature then reshapes the thermodynamic potential that influences
the dynamics of the fields. In this kind of box calculations pressure gradients in the fluid are small,
so we expect the dynamics to be governed by the fields.

We are now interested in the relaxational behavior of the sigma field and the Polyakov loop
comparing volume averages as they evolve in time for different quench temperatures and two
transition scenarios. The volume averages in a single event are defined as
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ℓijk , (36)

where σijk (ℓijk) is the instantaneous value of the sigma field (Polyakov loop) in a cell with coor-
dinates i, j, k. These values are furthermore averaged over Ne events with different noise configu-
rations.
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à At CP: Critical slowing down delays equilibration and produced oszillations 
around the flat minimum 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013) 
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Box calculations: Polyakov loop equilibration 

1st order PT, Tc=173 MeV:  
Equilibration of Polyakov loop for 
several temperature quenches 
(Tini=180 MeV) 

CP, Tc=180 MeV:  
Equilibration Polyakov loop for several 
temperature quenches (Tini=186 MeV) 

à Polyakov loop equilibrates quickly 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013) 
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Results for both transition scenarios are shown in figs. 4 and 5. They show the evolution of the
noise and volume averaged value of the sigma field in time for different quenching temperatures
T . The solid curves indicate the case where the system relaxes near the corresponding transition
temperature. In both cases the dynamics is slowed down, however for different reasons. At the
first order phase transition the barrier that separates minima near Tc is responsible for a significant
delay in the relaxation dynamics. For the second order transition we observe critical slowing down.
This is inherent in the model due to the vanishing of the damping coefficient around the critical
temperature that causes the system to oscillate around the equilibrium state and prolong the
relaxation time up to infinity.
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180 MeV.

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 5 10 15 20 25 30

⟨ℓ
⟩

t/fm

T = 120 MeV
T = 140 MeV
T = 166 MeV
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The average values of the Polyakov loop as a function of time are shown in figs. 6 and 7. Here
we find again a prolongation of the relaxation time near the first order phase transition where the
average value is slowly growing until t = 25 fm while for the other quenching temperatures, the
system is equilibrated after 5 fm. For a CP scenario, we observe the same effect than for the sigma
field: critical slowing down near the transition temperature, nevertheless with a small amplitude.

We performed these simulations with various damping coefficients for the Polyakov loop ηℓ
ranging from 1/fm up to 10/fm. A significant difference in the relaxational behavior could only be
observed in the case where the system equilibrated near the first order phase transition where a
larger value of ηℓ caused a larger relaxation time. In all other cases the results are not sensitive to
the choise of damping. Therefore we may consider our choice of ηℓ = 5/fm as justified, especially
for the case of an expanding hot medium, which we finally aim to describe.

The fluctuations of the order parameters can be analyzed by calculating their intensity Nσ and
Nℓ. For the sigma field this quantity is given by [36, 65, 66]

dNσ

d3k
=

a†kak
(2π)32ωk

=
ω2
k|δσk|2 + |∂tσk|2

(2π)32ωk
, (38)

where a†k and ak are the Fourier coefficients of the expansion of the sigma field around its equilibrium
value δσ = σ − σeq and of the conjugate momentum field ∂tσ. The energy of the k-th mode is

ωk =
√

k⃗2 +m2
σ. We use an analogous definition for the Polyakov loop

dNℓ

d3k
= T 2ω

2
k|δℓk|

2 + |∂tℓk|2

(2π)32ωk
(39)

with ωk =
√

k⃗2 +m2
ℓ , although this field formally has no kinetic energy term (see discussion at the
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Box calculations: intensities 

Mode occupation during the transition: 
at 12 fm (1st order) and 3 fm (CP) 

Mode occupation in equilibrium: 
at 24 fm/c 

à Damping of low frequency modes in case of 1st o. PT,  
strong enhancement of low freq. modes in case of CP 

à Do not trust the modes above 1 GeV! 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013) 
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FIG. 8. Intensity of sigma fluctuations during
the transition process at 12 fm (first order) and
3 fm (CP).
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FIG. 9. Intensity of sigma fluctuations after equi-
libration at 24 fm. In the CP scenario we find an
enhancement of the soft modes.
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FIG. 11. Intensity of Polyakov loop fluctuations
after equilibration at 24 fm. In the CP scenario
we find an enhancement of the soft modes.

end of section IIC). In equilibrium the quantities Nσ, Nℓ may be interpreted as particle numbers,
but to avoid confusion we call them ‘intensities of fluctuations’. Several histograms of Nσ and
Nℓ as a function of the wave number |k| evaluated at different times are shown in figs. 8, 9 for
the sigma field and figs. 10, 11 for the Polyakov loop. The figures on the left hand side show the
intensity at early times during the transition process. We see that here fluctuations at the first
order transition are clearly enhanced compared to the CP scenario. On the right hand side the
intensities are shown for the time t = 24 fm after the system has equilibrated. Here we see that the
long wavelength modes of both order parameters are enhanced at the CP, a typical and well-known
critical phenomenon [14].

IV. DYNAMICS IN AN EXPANDING MEDIUM

Here we are interested in the coupled dynamics of a system which is not confined in a box but
freely expands into vacuum, similar to what happens after a heavy-ion collision. We study the
relaxational behavior of the sigma field and Polyakov loop during the nonequilibrium evolution
and investigate the influence of energy-momentum exchange on the temperature evolution in both
transition scenarios.
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end of section IIC). In equilibrium the quantities Nσ, Nℓ may be interpreted as particle numbers,
but to avoid confusion we call them ‘intensities of fluctuations’. Several histograms of Nσ and
Nℓ as a function of the wave number |k| evaluated at different times are shown in figs. 8, 9 for
the sigma field and figs. 10, 11 for the Polyakov loop. The figures on the left hand side show the
intensity at early times during the transition process. We see that here fluctuations at the first
order transition are clearly enhanced compared to the CP scenario. On the right hand side the
intensities are shown for the time t = 24 fm after the system has equilibrated. Here we see that the
long wavelength modes of both order parameters are enhanced at the CP, a typical and well-known
critical phenomenon [14].

IV. DYNAMICS IN AN EXPANDING MEDIUM

Here we are interested in the coupled dynamics of a system which is not confined in a box but
freely expands into vacuum, similar to what happens after a heavy-ion collision. We study the
relaxational behavior of the sigma field and Polyakov loop during the nonequilibrium evolution
and investigate the influence of energy-momentum exchange on the temperature evolution in both
transition scenarios.
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Time evolution in expanding system 

1st order PT, Tc=173 MeV:  
Sigma field, Polyakov loop,  
av. temperature 

CP, Tc=180 MeV:  
Sigma field, Polyakov loop,  
av. temperature 

à At 1st order PT: super cooling by 10 MeV with reheating is observed 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013) 
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C. Supercooling and reheating

During the fluid dynamic expansion we extract the average temperature ⟨T ⟩, sigma field ⟨σ⟩
and Polyakov loop ⟨ℓ⟩ in a central cubic volume of 1fm3 inside the hot matter as a function of
time. The results are shown in fig. 14 for the first order transition and in fig. 15 for a scenario
with a CP. One can observe significant differences in the evolution of the average temperatures
between both scenarios: For the case of the first order transition, fig. 14, a reheating occurs after
6 fm as a consequence of the formation of a supercooled phase below the transition temperature.
We see that as the average temperature falls below Tc, the average values of the sigma field and
Polyakov loop remain close to their high temperature values around σ/fπ = 0.1 and ℓ = 0.4. This
supercooled state decays after about 2 fm to the global minimum and transfers its energy into the
fluid which consequently causes an increase in the average temperature.

For the CP scenario, fig. 15, no reheating effect is observed. The temperature decreases mono-
tonically with only a small plateau well below the transition temperature where the dynamics
slightly slows down due to the flat shape of the effective potential. The evolution of the averaged
field, especially for ⟨σ⟩, proceeds less rapidly than at the first order phase transition.
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FIG. 14. Evolution of the average temperature,
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ing through the first order transition. Supercool-
ing followed by reheating can be observed. The
horizontal line denotes the critical temperature.
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FIG. 15. Evolution of the average temperature,
sigma field and Polyakov loop in a system evolv-
ing through the CP. The temperature decreases
monotonically with a small plateau slightly be-
low Tc. The horizontal line denotes the critical
temperature.

D. Domain formation

We investigate the behavior of the fields and fluid during the transition process. Fig. 16 shows
the correlation length of the sigma field ξ = 1/mσ as a function of time for the expansion through
both the CP and the first order phase transition. For the latter one, ξ lies in a range of 0.3−0.5 fm
for the whole evolution while in the CP scenario it reaches a peak of about 1.5 fm when the system
crosses the transition temperature after t = 3.2 fm, cf. fig. 15.

A slice in the transversal z = 0 plane is shown for the sigma field in figs. 17 and 18, the Polyakov
loop in figs. 19 and 20 and for the energy density in figs. 21 and 22. We chose a time of t = 4 fm
for the first order scenario corresponding to the onset of the transition process and t = 3.2 fm for
the CP corresponding to the peak in the correlation length. In all three considered quantities we
find a crucial difference between the two transition scenarios. At the first order transition, both
the fields and fluid evolve irregularly. This effect is best observed in the sigma field, fig. 17, where
one can see domains of the chirally broken phase embedded in the chirally symmetric ellipsoid,
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We investigate the behavior of the fields and fluid during the transition process. Fig. 16 shows
the correlation length of the sigma field ξ = 1/mσ as a function of time for the expansion through
both the CP and the first order phase transition. For the latter one, ξ lies in a range of 0.3−0.5 fm
for the whole evolution while in the CP scenario it reaches a peak of about 1.5 fm when the system
crosses the transition temperature after t = 3.2 fm, cf. fig. 15.

A slice in the transversal z = 0 plane is shown for the sigma field in figs. 17 and 18, the Polyakov
loop in figs. 19 and 20 and for the energy density in figs. 21 and 22. We chose a time of t = 4 fm
for the first order scenario corresponding to the onset of the transition process and t = 3.2 fm for
the CP corresponding to the peak in the correlation length. In all three considered quantities we
find a crucial difference between the two transition scenarios. At the first order transition, both
the fields and fluid evolve irregularly. This effect is best observed in the sigma field, fig. 17, where
one can see domains of the chirally broken phase embedded in the chirally symmetric ellipsoid,
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Correlation length: dynamical system 

à Correlations are restricted to small scales,  
no large fluctuations emerge à difficult to observe! 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013) 
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•  Strongly increased 
correlation length at CP 

•  Reheating clearly 
visible at 1st o. PT 

•  However magnitude 
stays small (1-2 fm) 
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Domain formation 

1st o. PT 

CP 

P. loop energy density sigma field 

Profiles at the crossing of the transition line 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013) 
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Extension requires 3 steps:  

Extension to finite baryon densities 

1. Include µ-dependence in Polyakov loop potential,  
    cf. Schäfer, Pawlowski, Wambach  

2. Calculate grand canonical potential for finite chemical potential  

3. Propagate (net) baryon density in the hydro sector 
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Phase diagram at finite mu 

à Bending of the isentropes due to dynamical mass increase of the quark fields 

See also Wambach, Buballa; 
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin 

Critical point Isentropes 

T T 

mu_q mu_q 

8

The resulting phase coexistence and crossover lines are shown on the left hand side of figure 1.
They coincide for the chiral and confinement-deconfinement transition for all values of µ. Moreover,
we find a common critical point at (Tcp, µcp) = (152, 160) MeV.
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FIG. 1. Left: Phase diagram of the Polyakov quark meson model in mean field approximation. The chiral and
deconfinement phase boundary and corresponding critical points coincide. Right: Adiabats for the Polyakov
extended linear sigma model. Curves correspond from left to right to S/A = [24, 16, 12.5, 10, 8, 6, 4].

An interesting quantity for fluid dynamic simulations is the entropy per baryon S/A as it is
expected to be conserved within such a setup. Curves of constant S/A are called adiabats or
isentropes, they are determined by the relation

S

A
= 3

e+ p− µn

Tn
. (30)

In figure 1 (right) they are shown for the Polyakov loop extended linear sigma model that we
use. We see that as the curves hit the phase transition line from above, they bend away from
the CP towards a region of higher chemical potential. A focusing towards the CP only occurs in
the crossover regime. This is in contrast to what was claimed in [13], where the authors argued
that as trajectories hit the phase boundary, the hadronization process significantly decreases the
number of degrees of freedom leading to a release of latent heat which would eventually focus the
trajectories towards the CP. However, in our model the number of degrees of freedom does not
change but rather the quarks gain mass at the phase transition, so there is no such focusing effect.
This is analogous to what has been found for the quark-meson, NJL [1] and Polyakov-quark-meson,
PNJL models [60] before.

IV. NUMERICAL IMPLEMENTATION

We initialize a spherical droplet of quark matter in the center of a numerical grid with 1283

cells. We choose different initial values of the initial temperature Tini and quark chemical potential
µini and and use a Woods-Saxon function to ensure a smooth transition to the vacuum at the edges
of the droplet

T (t = 0, x⃗) =
Tini

1 + exp[(|x⃗|− r)/a]
, µ(t = 0, x⃗) =

µini

1 + exp[(|x⃗|− r)/a]
. (31)

Here r = 4.0 fm denotes the radius of the sphere and a = 0.5 fm the surface thickness. The fields
σ and ℓ are initialized with their respective T - and µ-dependent equilibrium values and finally the
thermodynamic quantities p, e and n are calculated using equations (26), (27) and (28).

We propagate the fluid numerically using the (3+1)d SHarp And Smooth Transport Algorithm
(SHASTA) ideal fluid dynamic code [61, 62] with a time step of ∆t = 0.4 ·∆x = 0.08 fm to ensure
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Trajectories in the phase diagram 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin 

à Reheating at high baryon densities, in and out of spinodal region 

Isentropes  
S/A=[24,16,12.5,10,8,6,4] 

Nonequilibrium 

trajectories 
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Fluctuations and quark densities 

C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin 

Angular distribution, 12 fm/c 

Nonequilibrium fluctuations, sigma field 6 fm/c 12 fm/c 

Crossover 

CP 

1st  o. PT 

à Strong fluctuations,inhomogeneous quark densities 
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l  Dynamical simulation of PQM model successful 

l  Extension to finite mu on the way 

l  Equilibration à Trajectories à reheating 

l  Fluctuations of the sigma field  

l  Quark density clusters (domain formation) 

l  Include pion fluctuations 

l  However, rather small correlation length 
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QUARK DYNAMICS 
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Hadronisation 

• How to go from partonic matter to hadronic matter?  
- energy conservation? 
- free quarks in the end? 
- what to do with gluons? 
- decrease in entropy? 
- transition to fragmentation? 

•  Chromodielectric model 
• Quark Molecular Dynamics 
• …. 
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Marcus Bleicher, CPOD 
2010 
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Quark Molecular Dynamics 
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Some critical remarks 
on EbyE and susceptibilities 

• Dynamics 
• Quarks 
• Mesons 
• Baryons 
• Confinement/ 

deconfinement 

M. Hofmann, PhD thesis 
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Marcus Bleicher, Bergen 2010 

Some properties: equilibrium 

Tc ~ 140  MeV 

HISS-2018, Dubna 



Time evolution 

The signal vanishes at hadronization 
for all observed quantities, i.e. susceptibilities 

pa
rto

n 
fra

ct
io

n 

Haussler, Bleicher, Stoecker, PLB 2008 
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Fluctuations and susceptibilities 

Haussler, Bleicher, arXiv:0803.2846: Susceptibilities and fluctuations in a Quark-Hadron System  
and JPG (2008): Correlations and fluctuations of conserved charges in a dynamical recombination approach  
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Recombination and fluctuation 
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where ⟨Nch⟩∆y = P ⟨Nch⟩total is used. For P < 1, the second term is negligible at SPS and

at RHIC.

Let us summarize the correction factors that need to be applied to take care of the effects

of the finite net charge and the finite acceptance window.

1. In order to correct for the finite net charge within the acceptance due to baryon

stopping, one has to apply a factor Cµ given by

Cµ = R̃2
∆y =

⟨N+⟩2∆y

⟨N−⟩2∆y

(9)

to the experimental data and the model calculations to compare with the pion gas and

quark gas result of [1].

2. In order to correct for the finite bin size in rapidity, and in order to incorporate global

charge conservation one has to rescale the experimental data and the transport model

predictions by a factor of

Cy = 1 − P = 1 −
⟨Nch⟩∆y

⟨Nch⟩total
. (10)

Thus, the basic observable to be compared with the predictions calculated in [1] is
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Again the subscript ∆y denotes the average taken in the rapidity acceptance, while the

subscript ‘total’ indicates the average of 4π acceptance.

Fig. 1 shows the D̃ values as predicted by the UrQMD model (symbols) as compared

to the estimates for the resonance gas (dashed line) and the quark gluon gas (full line).

The shown acceptance cuts are chosen according to the experimentally accessible rapidity

windows of the NA49 (2.5 ≤ y ≤ 4.5) and STAR (−1 ≤ y ≤ 1) detectors. One observes,

that the UrQMD model predictions of the charge ratio fluctuations are in agreement with
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Summary 

• No real dynamical model 
for the phase transition 
exisists 

• Hybrid and hydro 
approaches circumvent 
the modeling of the PT 

• Explicit quark dynamics 
can not capture feature 
like gauge invarince   

• Major developments are 
still needed! 
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