SIMULATIONS OF HEAVY ION COLLISIONS WITH A QCD PHASE TRANSITION

Marcus Bleicher
Frankfurt Institute for Advanced Studies
Institut für Theoretische Physik
Goethe Universität Frankfurt
Germany

Today

- Motivation
- 3-fluid hydrodynamics
- Hybrid models
- Coarse graining

Tomorrow

- Quark Molecular Dynamics
- Chiral Hydrodynamics
- Chiral Particle Dynamics

Thanks

- Hannah Petersen
- Jan Steinheimer
- Yuri Karpenko
- Pasi Huovinen
- Hendrik van Hees
- Marlene Nahrgang
- Stefan Endres

QCD Phase Diagram: Sketch

In heavy ion collisions heated and compressed nuclear matter is produced under controlled conditions

QCD Phase Diagram: „Reality"

M. Stephanov PoS 2006
L. Bravina, M.B., et al., JPG 1999
I. Arsene et al., PRC 2007

- Except for $\mu_{\mathrm{B}} \rightarrow 0$, many features are unknown
- Order of PT, critical points, dof (Quarkyonic matter?)

Signals of the Phase Transition

Potential Signals

- Correlation length
- Fluctuations
- Softening of the EoS
- Delayed expansion
- Parton coalescence
- Change of the dof
- Entropy production
- Fragmentation

Potential Observables

- Non-Gaussian fluctuations
- Charge ratio fluctuations
- Irregular v_{1} vs $\mathrm{E}_{\mathrm{lab}}$
- HBT and/or Photons
- Elliptic flow, exotic mesons
- Thermalization
- Pion yield
- Cluster formation / v_{n}

Need for Simulations

Time Evolution of Heavy Ion Collisions

Hybrid approaches are very successful for the description of the dynamics

Hannah Petersen, special issue JPG, arXiv:1404.1763

Models

Ab-initio simulations, e.g. lattice QCD are not possible for dynamical systems

Effective approaches are needed

Phase transitions out of equilibrium are difficult to describe

- Hybrid models (UrQMD, NexSpherio, hydro+JAM, MUSIC, Nonaka)
- 3 fluid hydrodynamics (Ivanov, Brachmann)
- Multi-phase models (AMPT)
- Quark molecular dynamics (qMD, Martens)
- Parton Cascades + Coales. (Molnar)
- Chiral hydrodynamics (Dumitru, Nahrgang)

THREE FLUID HYDRO

Motivation

1-fluid hydrodynamics

- Instantaneous local equilibration between projectile and target nuclei
- \rightarrow unrealistically large energy densities (pressure) and baryon densities
$-\rightarrow$ too large flow

3-fluid hydrodynamics

- Set-up: Target and projectile nuclei (fluid 1+2). Fluid 3: Fireball
- Introduce gradual deceleration, pump energy into fireball fluid
- Merge fluids when locally in equilibrium
- \rightarrow realistic energy and baryon densities

Equations of motion

Split Energy-Momentum Tensor and currents into individual fluids

Introduce source terms for the coupling

Solve larger set of equations, including conservation equations for total energy and current

From 1-fluid equations to 3 -fluids:

$$
\begin{aligned}
\partial_{\mu} T^{\mu \nu} & =0 & T^{\mu \nu}=(\epsilon+p) u^{\mu} u^{\nu}-p g^{\mu \nu} \\
\partial_{\mu} j_{i}^{\mu} & =0 & j^{\mu}=n u^{\mu}
\end{aligned}
$$

Split T and j into different fluids:

$$
\begin{aligned}
T^{\mu \nu} & =T_{1}^{\mu \nu}+T_{2}^{\mu \nu}+\cdots+T_{N}^{\mu \nu} \\
j^{\mu} & =j_{1}^{\mu}+j_{2}^{\mu}+\cdots+j_{N}^{\mu}
\end{aligned}
$$

Each individual T and j is not conserved (source terms)

$$
\begin{array}{rlrl}
\partial_{\mu} T_{l}^{\mu \nu} & =F_{l}^{\nu}, & F_{1}^{\nu}+F_{2}^{\nu}+\cdots+F_{N}^{\nu}=0 \\
\partial_{\mu} j_{l}^{\mu} & =S_{l} & & S_{1}+S_{2}+\cdots+S_{N}=0
\end{array}
$$

Coupling between the fluids

Split Energy-Momentum Tensor and currents into individual fluids

Introduce source terms for the coupling

Solve larger set of equations, including conservation equations for total energy and current

Energy/momentum loss of fluid I per time per volume via the collision rate

$$
v_{\text {Moller }}=\sqrt{\left(u_{1}^{\mu} u_{2 \mu}\right)^{2}-1}
$$

$$
F_{l}^{\nu}=n_{1} n_{2}\left\langle v_{M \text { ¢ller }} \int_{\tilde{p}_{\|}^{\prime}>0} \mathrm{~d} \sigma_{\mathrm{NN} \rightarrow \mathrm{NX}}\left(p^{\prime}-p\right)^{\nu}\right\rangle \quad, \quad \mathrm{d} \sigma_{\mathrm{NN} \rightarrow \mathrm{NX}}=\sigma_{\mathrm{NN} \rightarrow \mathrm{NX}}^{i n v} \frac{\mathrm{~d}^{3} p^{\prime}}{E^{\prime}}
$$

Splitting the integral into moments yields (E^{\prime}, p^{\prime} are after the collision) and neglecting <.>)

$$
\begin{aligned}
& F_{1}^{\nu}=\frac{1}{2} n_{1} n_{2} v_{\text {Mgller }}\left[\left(p_{2}-p_{1}\right)^{\nu} \sigma_{P}(s)-\left(p_{2}+p_{1}\right)^{\nu} \sigma_{E}(s)\right] \\
& F_{2}^{\nu}=\frac{1}{2} n_{2} n_{1} v_{\text {Moller }}\left[\left(p_{1}-p_{2}\right)^{\nu} \sigma_{P}(s)-\left(p_{1}+p_{2}\right)^{\nu} \sigma_{E}(s)\right]
\end{aligned}
$$

$$
\sigma_{E}(s)=\int_{\tilde{p}_{\|}^{\prime}>0} \mathrm{~d} \sigma_{\mathrm{NN} \rightarrow \mathrm{NX}}\left(1-\frac{\tilde{E}^{\prime}}{\tilde{E}}\right) \quad, \quad \sigma_{P}(s)=\int_{\tilde{p}_{\|}^{\prime}>0} \mathrm{~d} \sigma_{\mathrm{NN} \rightarrow \mathrm{NX}}\left(1-\frac{\tilde{p}_{\| \|}^{\prime}}{\tilde{p}_{\|}}\right)
$$

Sigma_E and sigma_P are parametrized from experimental data

Energy deposition of the Projectiles

1-fluid/3-fluid comparison

- Less energy density
- Transition of the projectile
- Different time of highest compression
- \rightarrow Less flow
- \rightarrow Lower temperatures

Brachmann et al, NPAA619 (1997) 391

3 minute break

- Discuss with your neighbor
how to measure the pressure in the central collision region

THREE FLUID HYDRO

Results

Directed Flows

- The squeeze-out (v_2) and the bounce-off ($\mathrm{v} _1$) are related to the pressure of the system
$\mathbf{p} \propto \int_{t} \int_{A} P(\rho, S) \mathrm{d} \mathbf{A} \mathrm{d} t$.

Directed Flow (aka v1)

$\mathrm{Au}+\mathrm{Au}(11 \mathrm{AGeV}), \mathrm{b}=3 \mathrm{fm}$, 1-Fluid-Limi 1

$\mathrm{Au}+\mathrm{Au}(11 \mathrm{AGeV}), \mathrm{b}=3 \mathrm{fm}, 3$-Fluid-Mode

Directed Flow

Definition and interpretation

Time dependence

Directed Flow Excitation Function

1-fluid/3-fluid Comparison

Importance of fluid unification

- Shift of the flow minimum
- Dissapearance of the minumum, if unification of the fluids is not included!
- Minimum (softest point) in reach of NICA

Stopping and Rapidity Densities

Proton rapidity spectra

Midrapidity proton yields

Ivanov, Phys.Lett. B690 (2010) 358-362

Flow excitation function: Irregularities

Coincides with mixed phase

Ivanov, Phys.Lett. B690 (2010) 358-362

HYBRID APPROACHES

UrQMD hybrid model as an example

Hybrid

Approaches
Combines relativistic hydrodynamics with relativistic Boltzmann equation.

Phase transition proceeds in hydro stage

Assumption:
local equilibrium

- 2D hydro +UrQMD
S. Bass, A. Dumitru, M. Bleicher, Phys.Rev.C60:021902,1999
- NexSpherio
F. Grassi, T. Kodama, Y. Hama,
J.Phys.G31:S1041-S'1044,2005
- 3D Hydro+JAM
T. Hirano, U. Heinz, D. Kharzeev, Y. Nara,

Phys.Lett.B636:299-304,2006

- 3D Hydro + UrQMD
C. Nonaka, S.A. Bass,

Nucl.Phys.A774:873-876,2006

- UrQMD 3.3
H. Petersen, J. Steinheimer, M. Bleicher, Phys. Rev. C 78:044901, 2008
- EPOS+Hydro+UrQMD
K. Werner, M. Bleicher, T. Pierog,

Phys.Rev. C82 (2010) 044904

- MUSIC
B. Schenke, S. Jeon, C. Gale, ... Nucl.Phys. A855 (2011) 303-306

UrQMD hybrid approach

- Initial State:
- Initialization of two nuclei
- Non-equilibrium hadron-string dynamics
- Initial state fluctuations are included naturally

- 3+1d Hydro +EoS:
- SHASTA ideal relativistic fluid dynamics
- Net baryon density is explicitly propagated
- Equation of state at finit μ_{B}

- Final State:
- Hypersurface at constant energy density
- Hadronic rescattering and resonance decays within UrQMD

Initial State

Contracted nuclei have passed through each other

$$
t_{\text {start }}=\frac{2 R}{\gamma v}
$$

- Energy is deposited
- Baryon currents have separated
- Energy-, momentum- and baryon number densities are mapped onto the hydro grid
- Event-by-event fluctuations are taken into account
- Spectators are propagated separately in the cascade

Time Evolution

Central $\mathrm{Pb}+\mathrm{Pb}$ collisions at 40A GeV:

- Number of particles decreases in the beginning due to resonance creation
- Qualitative behaviour very similar in both calculations
\rightarrow UrQMD equilibrates to a rather large degree

Equations of State

Ideal relativistic one fluid dynamics:

$$
\partial_{\mu} T^{\mu \nu}=0 \quad \text { and } \quad \partial_{\mu}\left(n u^{\mu}\right)=0
$$

- HG: Hadron gas including the same degrees of freedom as in UrQMD (all hadrons with masses up to 2.2 GeV)
- CH: Chiral EoS from quark-meson model with first order transition and critical endpoint
- BM: Bag Model EoS with a strong first order phase transition between QGP and hadronic phase

D. Rischke et al., NPA 595, 346, 1995,
D. Zschiesche et al.,

PLB 547, 7, 2002
Papazoglou et al., PRC 59, 411, 1999
J. Steinheimer, et al., JPG 38 (2011) 035001

Hadronization, Particlization, Decoupling

Particlization

- Experiment: finite number of hadrons in detectors (conservation laws!)
- Hadronization controlled by the equation of state
- Sampling of particles \rightarrow Cooper-Frye equation:

$$
E \frac{d N}{d^{3} p}=\int_{\sigma} f(x, p) p^{\mu} d \sigma_{\mu}
$$

- \rightarrow E,p,t,x on hypersurface

Sophisticated event-by-event
3D hypersurface

Decoupling stage

Collisions and decays

- Final propagation via Relativistic Boltzmann equation: $\left(p^{\mu} \partial_{\mu}\right) f=I_{\text {coll }}$
- Substantial amount of final state interactions
- Decoupling duration is on the order of $5 \mathrm{fm} / \mathrm{c}$ (central $\mathrm{Au}+\mathrm{Au} / \mathrm{Pb}+\mathrm{Pb}$)

3 minute break

- Discuss with your neighbor
problems at the interfaces between different stages

HYBRID APPROACHES

Results

Hybrid model at LHC (Pb+Pb, 2.76 TeV)

Excellent description of

- centrality dependence
- transverse momenta
- elliptic flow.

Initial State

- Energy-, momentum- and baryon number densities are mapped onto the hydro grid using for each particle

$$
\epsilon(x, y, z)=\left(\frac{1}{2 \pi}\right)^{\frac{3}{2}} \frac{\gamma_{z}}{\sigma^{3}} E_{p} \exp -\frac{\left(x-x_{p}\right)^{2}+\left(y-y_{p}\right)^{2}+\left(\gamma_{z}\left(z-z_{p}\right)\right)^{2}}{2 \sigma^{2}}
$$

- Changing σ leads to different granularities, but also changes in the overall profile

- How does changing the starting time affect the picture?

Idea: Angular correlation

Sources of Fluctuations

- Granularity is driven by
- position of nucleons
- distribution of collisions
- type of interaction
- degree of thermalization

- How to quantify the fluctuating shape of the initial state?
\rightarrow Fourier-expansion in position space

Anisotropic Flow -
 Higher Order Fourier Coefficients

Simplified picture:
Position-space anisotropy
\rightarrow Momentum-space anisotropy

Constraining Granularity

- Triangular flow is very sensitive to amount of initial state fluctuations
- It is important to have final state particle distributions to apply same analysis as in experiment
- Single-event initial condition provides best agreement with PHENIX data
- Does that imply that the initial state is well-described by binary nucleon interactions +PYTHIA?
- Lower bound for fluctuations!

Use Photons to Learn More

Photons: Direct Messengers from the QGP

\rightarrow from QGP: sensitivity to parton density and temperature
\rightarrow from initial state: sensitivity to PDFs (gluon!)
\rightarrow Compare to hadronic channels, i.e. $\pi+\rho \rightarrow \gamma+\pi, \ldots$

Cross section Refs

```
    1 E.g. Aurenche, Fontannaz et. al, PRD 73, 094007 (2006)
    2 Turbide, Rapp and Gale, PRC 69, 014903 (2004); Turbide, Gale et al., PRC 72, 014906 (2005);
Liu and Werner, arXiv:0712.3612 [hep-ph]; Vitev and Zhang, arXiv:0804.3805 [hep-ph]; Haglin, PRC 50, 1688
(1994); Haglin, JPG 30, L27 (2004), Chatterjee et al., Nucl. Phys. A }830\mathrm{ (2009) 503C
    3}\mathrm{ Dumitru, Bleicher, Bass, Spieles, Neise, Stöcker and Greiner, PRC 57, }3271\mathrm{ (1998); Huovinen, Belkacem, Ellis
and Kapusta, PRC 66, }014903\mathrm{ (2002); Li, Brown, Gale and Ko, arXiv:nucl-th/9712048; Bratkovskaya and Cassing,
NPA 619, 413 (1997); Bratkovskaya, Kiselev and Sharkov, arXiv:0806.3465 [nucl.th]
```


Photon Rates: Hadronic and Partonic

- Hadronic rate parametrization:

$$
E \frac{d R}{d^{3} p}=A \exp \left(\frac{B}{(2 E T)^{C}}-D \frac{E}{T}\right)
$$

S. Turbide, R. Rapp, C. Gale,

Phys. Rev. C69 (2004) 014903

- QGP rate:

$$
\begin{aligned}
& E \frac{d R}{d^{3} p}=\sum_{i=1}^{N_{f}} q_{i}^{2} \frac{\alpha_{\mathrm{em}} \alpha_{\mathrm{S}}}{2 \pi^{2}} T^{2} \frac{1}{e^{x}+1}\left(\ln \left(\frac{\sqrt{3}}{g}\right)+\right.\left.\frac{1}{2} \ln (2 x)+C_{22}(x)+C_{\mathrm{brems}}(x)+C_{\mathrm{ann}}(x)\right) \\
& \text { P. Arnold, G. Moore, L. Yaffe, } \\
& \text { JHEP 0112 (2001)009 }
\end{aligned}
$$

Insert all rates into the hybrid model and compare to data.

Temperature and dof: Photons

- Clear separation hadronic vs. partonic
- partonic calc. fit data
- Reasons for missing contributions in UrQMD/Hadron gas:
- late equilibration,
- hadronic rates,
- shorter life time

Data points from:
PHENIX, PRC 81 (2010) 034911
fig: Bäuchle, MB, PRC 82 (2010) 064901

Temperature and dof: Photons

- Clear separation hadronic vs. partonic
- partonic calc. fit data
- Reasons for missing contributions in UrQMD/Hadron gas:
- late equilibration,
- hadronic rates,
- shorter life time

Data points from:
PHENIX, PRC 81 (2010) 034911
fig: Bäuchle, MB, PRC 82 (2010) 064901
$p_{\perp}[\mathrm{GeV}]$

Is there QGP?

Comparisons

Hybrid, QGP: Channels

Bauechle, Bleicher, Phys.Rev. C81 (2010) 044904

3 minute break

- Discuss with your neighbor
how to measure the life time of the fireball

HBT Correlations

Hanbury-Brown-Twiss Correlations

1. Aerial photo and illustration of the original HBT ey have been extracted from Ref.[1].

HDT COMREIPtions: ae?

(R. Hanbury-Brown, R.Q. Twiss, 1956)

Bose-Einstein-statistics leads to short range correlations of bosons in momentum

$$
\begin{aligned}
C_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right) & =\frac{P_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right)}{P_{1}\left(\vec{p}_{1}\right) \cdot P_{1}\left(\vec{p}_{2}\right)} \\
& =1+\chi\left(\vec{p}_{2}-\vec{p}_{1}\right)
\end{aligned}
$$

χ allows to obtain information on the emission source (Imaging, Gauss-Source)

In heavy ion collisions: Pions, Kaons, ...

$$
\Delta r=\frac{\hbar c}{\Delta p}=\frac{197 \mathrm{MeV} / \mathrm{c}}{\Delta p} \mathrm{fm}
$$

Meaning of Components

- Two particle interferometry: Image and emission duration

$R_{\text {out }} / R_{\text {side }}-$ ratio measures emission time of the system

> Pratt-Bertsch ("out-side-long") coordinanates allow to obtain space and time information

1-fluid Hydro Prediction

- Mixed phase should lead to drastic increase in life time, visible in R_o/R_s ratio

HBT radii \rightarrow Lifetime

$\mathrm{R}_{0} / \mathrm{R}_{\mathrm{s}}$ Ratio

- Hydro phase leads to smaller ratios
- Hydro to transport transition does not matter, if final rescattering is taken into account
- EoS dependence is visible, but not as strong as previuosly predicted (factor of 5)

Summary: Hydro and Hybrid Models

- Hybrid approaches have become the "Standard Model" for Heavy Ion collisions
- Can not be used at low energies, because initial/intermediate state separation is not well defined
- Angular correlations constrain initial state
- Photon yields support the existence of QGP
- HBT correlations may indicate increased life times

3 minute break

- Discuss with your neighbor

Is there a (simple) alternative to hydro/hybrid transport to explore in-medium effects/phase transitions?

COARSE GRAINING

Results

Hadronic models

(1) Kinetic theory

- Realized in transport models (here UrQMD)
- Effective solution of the Boltzmann equation
- Physics input and parameters: cross-sections (total and partial), resonance parameters, string fragmentation scheme
- "On-shell" quasi-particles on classical trajectories
- Collision term includes elastic \& inelastic scatterings (e.g. $\pi \pi \rightarrow \rho$) and resonance decays (e.g. $\mathrm{N}^{*} \rightarrow N+\pi$)
\hookrightarrow But: Incoherent summation over processes, missing off-shell dynamics, restricted to lower densities (no multi-particle interactions) \rightarrow Medium effects only partially implemented
(2) Hadronic many-body theory
- Calculate particle self-energies using quantum field theory
- Coherent summation: Accounts for quantum interference
\hookrightarrow But: Restricted to equilibrated matter, assumes heat bath
\rightarrow Two sides of the same medal!

coarse graining

- Goal: One approach for all energies, realistic evolution of the reaction, but limited number of variables
\hookrightarrow Combining a realistic $3+1$ dimensional microscopic expansion of the system with macroscopic description of the dilepton emission
- Coarse-graining $=$ Reduction of information \rightarrow System uniquely determined by (local) energy and particle densities
- Microscopic description \rightarrow Necessary to average over many simulation events
- Sufficiently large number of events \rightarrow Distribution function $f(\vec{x}, \vec{p}, t)$ takes a smooth form

$$
f(\vec{x}, \vec{p}, t)=\left\langle\sum_{h} \delta^{3}\left(\vec{x}-\vec{x}_{h}(t)\right) \delta^{3}\left(\vec{p}-\vec{p}_{h}(t)\right)\right\rangle
$$

- UrQMD model constitutes a non-equilibrium approach
\hookrightarrow Equilibrium quantities have to be extracted locally at each space-time point

Coarse graining

- First proposed by Huovinen et al. [Phys. Rev. C66, 014903 (2002)]
- Put ensemble of UrQMD events on grid of space-time cells
- Determine baryon and energy density and use Eckart's definition to determine the rest frame properties
\rightarrow Use equation of state to calculate T and μ_{B}
- Two EoS: Free hadron gas with UrQMD-like degrees of freedom + Lattice EoS for $T>170 \mathrm{MeV}$
[D. Zschiesche et al., Phys. Lett. B547, 7 (2002); M. He et al., Phys. Rev. C 85 (2012)]

Advantages

- Robustness of the evolution \rightarrow Microscopic details differ, but evolution of energy and particle densities similar
- Medium effects straightforward in terms of T and $\mu_{\mathrm{B}} \leftrightarrow$ But: Assumption of local equilibrium necessary

Accounting for non-equilibrium

\rightarrow To which extent is equilibrium obtained in the dynamics?
\rightarrow How can one deal with deviations from equilibrium?

- Macroscopic descriptions \rightarrow Equilibrium usually introduced as ad-hoc assumption
- Transport models \rightarrow Non-equilibrium normal case at any stage
- Two aspects have to be taken into account:
(1) Kinetic non-equilibrium \rightarrow momentum-space anisotropies
(2) Chemical non-equilibrium \rightarrow overdense pionic system \rightarrow finite pion chemical potential μ_{π}
\Rightarrow Calculate "effective" energy density and determine μ_{π} in Boltzmann approximation

Di-lepton emission

- Emission is calculated for each cell of 4-dim. grid
- Electromagnetic emission is related to the imaginary part of the retarded current-current correlator $\Pi_{\mathrm{em}}^{(\text {ret })}$ as
[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

$$
\begin{aligned}
\frac{\mathrm{d} N_{\| I}}{\mathrm{~d}^{4} x \mathrm{~d}^{4} q} & =-\frac{\alpha_{\mathrm{em}}^{2} L(M)}{\pi^{3} M^{2}} f_{\mathrm{B}}(q ; T) \times \operatorname{Im} \Pi_{\mathrm{em}}^{(\mathrm{ret})}\left(M, \vec{q} ; \mu_{\mathrm{B}}, T\right) \\
q_{0} \frac{\mathrm{~d} N_{\gamma}}{\mathrm{d}^{4} x \mathrm{~d}^{3} q} & =-\frac{\alpha_{\mathrm{em}}}{\pi^{2}} f_{\mathrm{B}}(q ; T) \times \operatorname{Im} \Pi_{\mathrm{em}}^{T,(\mathrm{ret})}\left(q_{0}=|\vec{q}| ; \mu_{\mathrm{B}}, T\right)
\end{aligned}
$$

- Include ρ and ω spectral functions from HMBT (Rapp et al.), meson gas contributions and lattice rates for the QGP
- Non-thermal dilepton contributions (π, η, ϕ) directly from UrQMD + freeze-out ρ and ω (if $T<50 \mathrm{MeV}$)
\hookrightarrow For more details about the CG-approach see PRC 91, 054911 (2015); PRC 92, 014911 (2015) and PRC 93, 054901 (2016)

Baseline comparison at SPS

- The coarse-graining of UrQMD input gives realistic and nuanced picture of the collision evolution \rightarrow Detailed space-time description of temperature and chemical potential
- At SPS one reaches temperatures significantly above T_{c} in combination with moderate values of μ_{B}
- Note: Right plot shows maxima of T and μ (central cell), not average \rightarrow Different values for each space-time cell!

NA60 - di-lepton spectra

- ρ shows broadening compared to case without baryons
- QGP and multi-pion annihilation are the relevant sources in the intermediate mass region
- For $\mathrm{M}>1.5 \mathrm{GeV} / c^{2}$ QGP contribution clearly dominates
- Duality between hadronic and partonic emission rates?
\hookrightarrow Results agree with fireball + hydro calculations; differences in dynamics

Comparison of different spectral functions

- HMBT results $\leftrightarrow \rho$ spectral function obtained using empirical scattering amplitudes from resonance dominance
[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]
- Not enough broadening due to low-density expansion of the self energies \rightarrow Overshoots data at peak, underestimates for lower masses

SIS 18, low T, high μ_{B}

- Very slow evolution of the fireball
$\hookrightarrow T$ and μ_{B} remain roughly constant for up to $20 \mathrm{fm} / \mathrm{c}$!
- Moderate temperatures and very high baryon density respectively baryochemical potential \rightarrow Ideal situation to study in-medium modifications

HADES vs. c.g. UrQMD

- Significant in-medium broadening of the ρ spectral function, causing a strong increase of the dilepton yield below the pole mass
- Low-mass enhancement increases with system size
- Low temperatures \rightarrow Higher masses and pole mass peak suppressed

FAIR and photons

- Unexplored transition region
\hookrightarrow Hadron gas \leftrightarrow QGP
\hookrightarrow high $\mu_{B} \leftrightarrow$ moderate μ_{B}
- High luminosities enable systematic studies
\hookrightarrow Energy, momentum, centrality, system size, ...

Summary: Coarse graining

- Allows to employ QFT . Works excellent for in the analysis leptons
- Alternative to hybrid and 3-fluid at low energies.
- Photon yields support the existence of QGP
- No EoS in the dynamics, but in the emission rates.
- Charm studies under way

CHIRAL HYDRODYNAMICS

Nonequilibrium Chiral Fluid Dynamics ($\mathrm{N} \chi$ FD, $\mathrm{PN} \chi \mathrm{FD}$)

Aim: Explore signals for QCD first order phase transition and critical end point
Model: Ideal quark fluid coupled to Polyakov-quark-meson model

$$
\mathcal{L}=\bar{q}\left[i\left(\gamma^{\mu} \partial_{\mu}-i g_{\mathrm{s}} \gamma^{0} A_{0}\right)-g\left(\sigma+i \gamma_{5} \vec{\tau} \cdot \vec{\pi}\right)\right] q+\frac{1}{2}\left(\partial_{\mu} \sigma\right)^{2}+\frac{1}{2}\left(\partial_{\mu} \vec{\pi}\right)^{2}-U(\sigma, \vec{\pi})-\mathcal{U}(\ell, \bar{\ell})
$$

Propagate chiral fields and Polyakov loop explicitly via Langevin equations of motion

$$
\partial_{\mu} \partial^{\mu} \sigma+\eta_{\sigma}(T) \partial_{t} \sigma+\frac{\partial V_{\text {eff }}}{\partial \sigma}=\xi_{\sigma} \quad \eta_{\ell} \partial_{t} \ell T^{2}+\frac{\partial V_{\text {eff }}}{\partial \ell}=\xi_{\ell}
$$

Energy-momentum exchange between fields and fluid described by source terms

$$
\partial_{\mu} T_{q}^{\mu \nu}=\left(\frac{\partial \Omega_{q \bar{q}}}{\partial \sigma}+\eta_{\sigma} \partial_{t} \sigma\right) \partial^{\nu} \sigma+\left(\frac{\partial \Omega_{q \overline{\bar{q}}}}{\partial \ell}+\eta_{\ell} \partial_{t} \ell T^{2}\right) \partial^{\nu} \ell
$$

Solve with 3+1 dim. hydro, using SHASTA and staggered leap frog for the fields

CP vs. $1^{\text {st }}$ order by adjustment of g

Effective potential for 1st order PT:
Tc=173 MeV, $g=4.7$

Effective potential for CP: $\mathrm{Tc}=180 \mathrm{MeV}, \mathrm{g}=3.5$
\rightarrow first step: vanishing baryon chemical potential, second step: full calculation
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013)

Box calculations: sigma equilibration

1st order PT, Tc=173 MeV: Equilibration sigma-field for several temperature quenches (Tini=180 MeV)

CP, Tc=180 MeV:
Equilibration sigma-field for several temperature quenches (Tini=186 MeV)
\rightarrow At CP: Critical slowing down delays equilibration and produced oszillations around the flat minimum
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013)

Box calculations: Polyakov loop equilibration

1st order PT, Tc=173 MeV:
Equilibration of Polyakov loop for several temperature quenches (Tini=180 MeV)

CP, Tc=180 MeV:
Equilibration Polyakov loop for several temperature quenches (Tini=186 MeV)
\rightarrow Polyakov loop equilibrates quickly
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013)

Box calculations: intensities

Mode occupation during the transition: at 12 fm (1st order) and 3 fm (CP)

Mode occupation in equilibrium: at $24 \mathrm{fm} / \mathrm{c}$
\rightarrow Damping of low frequency modes in case of 1st o. PT, strong enhancement of low freq. modes in case of CP
\rightarrow Do not trust the modes above 1 GeV !
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013)

Time evolution in expanding system

1st order PT, Tc=173 MeV: Sigma field, Polyakov loop, av. temperature

CP, Tc=180 MeV: Sigma field, Polyakov loop, av. temperature
\rightarrow At 1st order PT: super cooling by 10 MeV with reheating is observed
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013)

Correlation length: dynamical system

- Strongly increased correlation length at CP
- Reheating clearly visible at 1st o. PT
- However magnitude stays small (1-2 fm)
\rightarrow Correlations are restricted to small scales, no large fluctuations emerge \rightarrow difficult to observe!
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin, PRC 87 (2013)

Domain formation

Profiles at the crossing of the transition line

Extension to finite baryon densities

Extension requires 3 steps:

1. Include μ-dependence in Polyakov loop potential, cf. Schäfer, Pawlowski, Wambach

$$
\mathcal{U}\left(\ell, T, T_{0}\right), \quad T_{0} \rightarrow T_{0}(\mu)
$$

2. Calculate grand canonical potential for finite chemical potential

$$
\Omega_{q \bar{q}}=-2 N_{f} T \int \frac{\mathrm{~d}^{3} p}{(2 \pi)^{3}}\left\{\left(\ln \left[1+3 \ell \mathrm{e}^{-\beta(E-\mu)}+3 \ell \mathrm{e}^{-2 \beta(E-\mu)}+\mathrm{e}^{-3 \beta(E-\mu)}\right]+(\mu \rightarrow-\mu)\right\}\right.
$$

3. Propagate (net) baryon density in the hydro sector
$\partial_{\mu} n^{\mu}=0, \quad n^{\mu}=\rho u^{\mu}$

Phase diagram at finite mu

Critical point

Isentropes
\rightarrow Bending of the isentropes due to dynamical mass increase of the quark fields

See also Wambach, Buballa;
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin

Trajectories in the phase diagram

Nonequilibrium
trajectories

\rightarrow Reheating at high baryon densities, in and out of spinodal region
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin

Fluctuations and quark densities

Nonequilibrium fluctuations, sigma field

Angular distribution, 12 fm/c

Crossover

1st o. PT

\rightarrow Strong fluctuations,inhomogeneous quark densities $\times(\mathrm{m})$
C. Herold, M. Nahrgang, M. Bleicher, I. Mishustin

Chiral Dynamics: Summary, Outlook

- Dynamical simulation of PQM model successful
- Extension to finite mu on the way
- Equilibration \rightarrow Trajectories \rightarrow reheating
- Fluctuations of the sigma field
- Quark density clusters (domain formation)
- Include pion fluctuations
- However, rather small correlation length

QUARK DYNAMICS

Hadronisation

- How to go from partonic matter to hadronic matter?
- energy conservation?
- free quarks in the end?
- what to do with gluons?
- decrease in entropy?
- transition to fragmentation?
- Chromodielectric model
- Quark Molecular Dynamics

A model for QCD
Chromodielectric model (CDM) [G.Martens et.al., Phys.Rev. D70/D73]

$$
\begin{aligned}
\mathcal{L}_{\mathrm{cdm}}= & \frac{1}{4} \kappa(\sigma) F_{\mu \nu}^{a} F^{\mu \nu, a} & & \mathcal{L}_{g / u e} \\
& -g j_{\mu}^{a} A^{\mu, a} & & \mathcal{L}_{q, g} \\
& +\frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma-U(\sigma) & & \mathcal{L}_{\sigma} \\
F^{\mu \nu, a}= & \partial^{\mu} A^{\nu, a}-\partial^{\nu} A^{\mu, a} & & a \in\{3,8\}
\end{aligned}
$$

Self interaction \& Dielectric

Color multipletts

Quark Molecular Dynamics

Hamiltonian of the model :

$$
H=\sum_{i=1}^{N} \sqrt{\mathbf{p}_{i}^{2}+m_{i}^{2}}+\frac{1}{2} \sum_{i \neq j} C_{i j} V\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- Potential :
linear potential $V(r)=\kappa r$
- Color factor $C_{i j}$:
can be attractive or repulsive depending on the color of the quarks
- Quarks:
classical point-particles with light masses $m_{u, d}=5 \mathrm{MeV}, m_{s}=150 \mathrm{MeV}$

Some critical remarks on EbyE and sısse.entihilities

- Dynamics
- Quarks
- Mesons
- Baryons
- Confinement/ deconfinement

M. Hofmann, PhD thesis

Some properties: equilibrium

$\mathrm{Tc} \sim 140 \mathrm{MeV}$

Time evolution

The signal vanishes at hadronization for all observed quantities, i.e. susceptibilities

Haussler, Bleicher, Stoecker, PLB 2008

Fluctuations and susceptibilities

$$
\begin{gathered}
Z=\sum_{i} \exp \left[-\beta\left(E_{i}-\mu_{Q} Q_{i}-\mu_{B} B_{i}-\mu_{S} S_{i}\right)\right] \\
(X, Y)=(Q, B, S)
\end{gathered}
$$

variances and correlations

$$
\begin{aligned}
\left\langle(\delta X)^{2}\right\rangle & =T^{2} \frac{\partial^{2}}{\partial \mu_{X}^{2}} \log (Z) \\
\langle(\delta X)(\delta Y)\rangle & =-T \frac{\partial^{2}}{\partial \mu_{X}^{2}} F \\
T^{2} \frac{\partial^{2}}{\partial \mu_{X} \mu_{Y}} \log (Z) & =-T \frac{\partial^{2}}{\partial \mu_{X}^{2} \mu_{Y}^{2}} F
\end{aligned}
$$

susceptibilities

$$
\begin{aligned}
\left\langle\delta X^{2}\right\rangle & =-\frac{1}{V} \frac{\partial^{2}}{\partial \mu_{X}^{2}} F \\
\langle\delta X \delta Y\rangle & =-\frac{1}{V} \frac{\partial^{2}}{\partial \mu_{X} \partial \mu_{Y}} F
\end{aligned}=V T \chi X X X X Y \text { 位 }
$$

Haussler, Bleicher, arXiv:0803.2846: Susceptibilities and fluctuations in a Quark-Hadron System and JPG (2008): Correlations and fluctuations of conserved charges in a dynamical recombination approach

Baryon-Strangeness Correlations

Koch, Majumder, Randrup. Phys.Rev.Lett.95:182301,2005.
S. H., Stoecker, Bleicher. Phys.Rev.C73:021901,2006.

In a QGP, strangeness is always carried together with baryon number In a Hadron Gas, Strangeness can be carried without baryon number

$$
C_{B S}=-3 \frac{\langle B S\rangle-\langle B\rangle\langle S\rangle}{\left\langle S^{2}\right\rangle-\langle S\rangle^{2}} \approx-3 \frac{\langle B S\rangle}{\left\langle S^{2}\right\rangle}
$$

related quantities :

expectation values :

- $C_{B S}=1$ in a QGP
- $C_{B S}=0.66$ in a HG ($T=170 \mathrm{MeV}, \mu=0$)
some particles are difficult to measure
- $C_{Q S}=\frac{\langle Q S\rangle-\langle Q\rangle\langle S\rangle}{\left\langle S^{2}\right\rangle-\langle S\rangle^{2}} \approx \frac{3-C_{B S}}{2}$
- $C_{M S} \approx C_{B S}$ with $M=B+2 / 3$
- take into account only strange charged particles

Recombination and fluctuation

$$
\begin{aligned}
& \tilde{D}=\frac{\left\langle N_{\mathrm{ch}}\right\rangle_{\Delta y}\left\langle\delta R^{2}\right\rangle_{\Delta y}}{C_{\mu} C_{y}}= \begin{cases}1 & \text { quark gluon gas } \\
2.8 & \text { resonance gas } \\
4 & \text { uncorrelated pion gas }\end{cases} \\
& C_{\mu}=\tilde{R}_{\Delta y}^{2}=\frac{\left\langle N_{+}\right\rangle_{\Delta y}^{2}}{\left\langle N_{-}\right\rangle_{\Delta y}^{2}} \\
& C_{y}=1-P=1-\frac{\left\langle N_{\mathrm{ch}}\right\rangle_{\Delta y}}{\left\langle N_{\mathrm{ch}}\right\rangle_{\text {total }}}
\end{aligned}
$$

Recombination kills the fluctuations

- $\tilde{D}=1$ in the quark matter phase
- \tilde{D} is compatible with the experiment result in the late stage
- Hadronization and the increase of \tilde{D} occur at the same time

Summary

- No real dynamical model for the phase transition exisists
- Explicit quark dynamics can not capture feature like gauge invarince
- Hybrid and hydro approaches circumvent the modeling of the PT
- Major developments are still needed!

