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Aim: brief review of the canonical BRST construction for Lagrangian
formulation of free massless higher spin field.
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Irreducible representations of the Poincáre group
Poincare group is a mathematical expression of the special relativity
symmetry.

This group defined as a group of linear inhomogeneous transformations of the
Minkowski space

x
′ m = Λm

nxn + am

leaving invariant interval, where am are the constants and the constant matrix
Λ satisfies the condition ΛTηΛ = η with matrix η = diag{+,−,−,−} is the
Minkowski metric. Here m,n = 0,1,2,3. At am = 0 we get the Lorentz group.

The Poincáre group is ten-parametric Lie group with generators Pm and
Jmn = J[mn] satisfying the commutation relations

[Pm,Pn] = 0, [P, J] ∼ P, [J, J] ∼ J.

The group possesses two Casimir operators

P2 = PmPm, W 2 = W mWm,

where Wm = 1
2εmnklPnJkl .



Irreducible representations of the Poincáre group
The irreducible representations are described by eigenvalues of the Casimir
operators. They are divided into massive and massless. Usually it is said that
these representations describe the elementary systems or elementary particles.

Massive representations

P2 = m2, W 2 = −m2s(s + 1).

Real positive parameter m is called mass, parameter s, taking the values
0, 1

2 ,1,
3
2 ,2 . . ., is called spin.

Massless representations

P2 = 0, W 2 = −µ2,

Here there are two cases.
1 µ = 0. Then W m = λPm. The parameter λ, taking the values

0,± 1
2 ,±1,± 3

2 , . . . , is called helicity. Sometimes the |λ| is called spin of
massless particle

2 µ 6= 0. At each µ these representations contains infinite tower of massless
representations with all (integer or half-integer) helicities. In this case it is
called infinite of continuous spin particle.



Irreducible representations of the Poincáre group

The irreducible representations of the Poincáre group can be realized in terms
of fields on Minkowski space.

Massive representation with given mass m and integer spin s is realized in
linear space of totally symmetric tensor fields ϕm1m2m3...ms (x) under the
conditions

(�−m2)ϕm1m2m3...ms = 0, ∂m1ϕm1m2m3...ms = 0, ηm1m2ϕm1m2m3...ms = 0

Massless representation with µ = 0 and with given integer helicity λ = s
is realized in linear space of totally symmetric tensor fields ϕm1m2m3...ms (x)
under the conditions

�ϕm1m2m3...ms = 0, ∂m1ϕm1m2m3...ms = 0, ηm1m2ϕm1m2m3...ms = 0

Higher spin problem: problem of Lagrange formulation.



Irreducible representations of the Poincáre group
The infinite spin representation requires a special consideration. In this case to
write the conditions defying the irreducible representation we should introduce
some additional variables. As such additional variables one can take the
commuting spinor coordinates ξα and ξ̄α̇. The spinor ξα belongs to
fundamental representation of Lorentz group and the spinor ξ̄α̇ = (ξα)∗

belongs to conjugate representation, α = 1,2. The conditions of irreducible
representation are written in terms of fields Φ(x , ξ, ξ̄) in the form

∂m∂m Φ(x ; ξ, ξ̄) = 0 ,[
ı̇
(
ξσmξ̄

)
∂m + µ

]
Φ(x ; ξ, ξ̄) = 0 ,[

ı̇

(
∂

∂ξ
σm ∂

∂ξ̄

)
∂m − µ

]
Φ(x ; ξ, ξ̄) = 0 ,

[
ξ
∂

∂ξ
− ξ̄

∂

∂ξ̄

]
Φ(x ; ξ, ξ̄) = 0 .

Here (σm)αα̇ are the invariant matrices associated with Lorentz group.
Problem of Lagrange formulation.



General gauge theories
General gauge theory is defined by the conditions

1 Set of fields Φi and action S[Φ]. Index i includes space-time argument and
all discrete indices if they are. The fields can have zero or non-zero
Grassmann parity.

2 Filed transformations with parameters ξα. Index α includes space-time
argument and all discrete indices if they are.

δΦi = R i
α[Φ]ξα.

Here, it is assumed integration over the space-time argument and
summation over discrete indices corresponding to index α.

3 Invariance of action S[Φ] under above transformation,

S,i [Φ]R i
α[Φ] = 0.

Here, S,i [φ] means derivative with respect of Φi and it is assumed
integration over the space-time argument and summation over discrete
indices corresponding to index i .
The field transformations are called gauge and the R i

α[Φ] are called the
generators of gauge transformations.



General gauge theories

The above three conditions lead to relation for the generators of gauge
transformations

R i
β ,j [Φ],R j

α[Φ]− R i
α ,j [Φ],R j

β[Φ] = R i
γ [Φ]f γαβ[Φ] + X ij

αβ[Φ]S,j [Φ].

Left hand side is called the commutator of generators, the f γαβ[Φ] are called
the structure functions. This relation is said to define a general gauge algebra.

If X ij
αβ[Φ] = 0, the algebra is called closed, in opposite case it is called open.

The generators are called linearly dependent if there exist non-zero nα[Φ] such
that R i

α[Φ]nα[Φ] = 0. In opposite case they are called independent.

If the algebra is closed, the generators are independent and the structure
functions are constants, the gauge algebra leads allows to prove that these
constants satisfy the Jacobi identities and, hence, we can identify the gauge
generators with generators of some Lie algebra.



Phase space structure of gauge theories
A distinctive feature of gauge theories is the presence of first-class constraints
in phase space. Such constraints appear automatically when we move from the
Lagrangian formulation of gauge theories to their Hamiltonian formulation.

Let (qa,pa) are the phase space coordinates, H(q,p) is a Hamiltonian and
Ta(q,p) are the constraints. The constraints are called first-class if they satisfy
the following relation in terms of Poisson brackets

{Ta,Tb} = Cc
ab(q,p)Tc

The functions Cc
ab are determined by gauge algebra in Lagrangian formalism.

Therefore one can say that these relations define the gauge algebra. In this
case, the action in the Hamiltonian formalism is written in the form

SH [q,p] = paq̇a − H(q,p)− λaTa,

where λa are the Lagrange multipliers. This relation is derived when we move
from Lagrangian formulation to Hamiltonian formulation. However, in
principle, if we somehow define the constraints, their first class algebra and
the action SH [q,p], then one can construct a Lagrangian gauge formulation
corresponding to given Hamiltonian formulation with constraints. In this case,
the first-class algebra of constraints is also called the gauge algebra.



Canonical BRST charge

Let Ta the first-class constraints in the phase space and let the functions Cc
ab

are the constants. We extend the phase space by anticommuting (fermionic)
coordinates ηa and momenta Pa which are called the ghost variables. Define in
the extended phase space the fermionic function Q(q,p, η,P) by the rule

Q = ηaTa +
1
2

Ca
bcη

bηcPa.

One can show that Q is nilpotent in terms of graded Poisson brackets. This
function is called BFV (Batalin-Fradkin-Vilkovisky) charge or canonical BRST
(Becci-Ruet-Stora-Tyutin) charge.

After quantization, the BRST charge becomes an nilpotent operator acting in
the state space of vectors |Ψ〉, |Ψ〉′ = Q|Ψ〉. This relation is invariant under
transformation |Ψ〉 → |Ψ〉+ Q|Λ〉. Last relation is realization of gauge
invariance in state space.



Lagrangian formulation of free massless higher-spin field
theory
Derivation of the Lagrangian formulation for free massless integer spin filed.
Begin with conditions defying the irreducible massless representation of the
Poincáre group with definite helicity s. Representation is realized in space of
fields ϕm1...ms under conditions

�ϕ = 0, trϕ = 0, divϕ = 0.

Using the Lorentz group invariant matrices (σm)αα̇ we can convert each vector
index m into two spinor indices α, α̇ as follows vm = (σm)αα̇vαα̇. As a result,
one gets the field ϕα1...αsα̇1...α̇s (x). Then make total symmetrization over all
dotted indices and all undotted indices. It gives the field ϕα(s)α̇(s)(x). If to
convert the spinor indices of this field into vector ones, we obtain the tensor
field automatically satisfying relation trϕ = 0. Further we work with field
ϕα(s)α̇(s)(x) satisfying relations

�ϕα(s)α̇(s)(x) = 0,

∂α1α̇1ϕα(s)α̇(s)(x) = 0,
where ∂α1α̇1 ∼ (σm)αα̇∂m



Lagrangian formulation of free massless higher-spin field
theory

Let us now begin to interpret the relations that define the irreducible
representations of the Poincáre group for the field ϕα(s)α̇(s)(x) as first-class
constraints in the phase space of some as yet unknown gauge theory and
construct the corresponding Lagrangian formulation.
Realization

1 Let us introduce two sets of bosonic annihilation aα, āα̇ and creation
cα, c̄α̇ operators with standard commutation relations and define the Fock
space of the vectors |ϕs〉 = 1

s!ϕα(s)
α̇(s)(x)cα(s)c̄α̇(s)|0〉, where |0〉 is the

corresponding vacuum vector.
2 Let us introduce the operators, acting on Fock space vectors

L0 = �, L = i(aσmā)∂m and the conjugate operator L+, acting on
conjugate vectors

3 The relations defying the irreducible representation can be rewritten in
the form L0|ϕs〉 = 0, L|ϕs〉 = 0.



Lagrangian formulation of free massless higher-spin field
theory
Commutations relations for the operators L0, L, L+ have the form
[L,L0] = 0, [L+,L0] = 0, [L+,L] = KL0,
where K = cαaα + c̄α̇ȧα̇ + 2.

Using the operators L0, L, L+ as the constrains we construct the nilpotent
BRST operator by the general rule in the form

Q = η0L0 + η+L + ηL+ + Kη+ηP0,

where η) = η+0 , η, η
+ are the anticommuting ghost coordinates and

P0 = P+
0 ,P,P+ are the corresponding anticommuting ghost momenta.

Both ghost coordinates and ghost momenta annihilate vacuum vector.
Define the extended Fock space of the vectors
|Φ〉s = |ϕs〉+ η0P+|ϕ1,(s−1)〉+ η+P+|ϕ2,(s−2)〉
Consider the equation of motion Q|Φ〉s = 0, which is invariant under the
transformation |Φ〉′s = |Φ〉s + Q|Λs〉. One can show that this equation
reproduce the relations defying irreducible representation.



Lagrangian formulation of free massless higher-spin field
theory
The Lagrangian leading to the equation of motion Q|Φ〉s = 0 is written in the
form

Ls =

∫
dη0〈Φs|Q|Φs〉

Substituting the explicit form of the operator Q and vectors |Φs into above
expression one gets the Lagrangian

Ls = 〈ϕs|(L0|ϕs〉 − L+|ϕ1(s−1)〉)− 〈ϕ1(s−1)|(L|ϕs − L+|ϕ2(s−2)〉+ K |ϕ1(s−1)〉)−
−〈ϕ2(s−2)|(L0|ϕ2(s−2)〉 − L|ϕ1(s−1)〉)

and gauge transformations

δ|ϕs〉 = L+|λs−1〉, δ|ϕ1(s−1)〉 = L0|λs−1〉, δ|ϕ2(s−2)〉 = L|λs−1〉.

BRST construction automatically solves a problem of gauge invariant
Lagrangian formulation for free higher spin field theory on the based of
relations defying the irreducible representation. The formulation possesses
extremely high gauge symmetry. Using the various gauge fixing conditions we
can derive the various equivalent Lagrangian formulations.



Lagrangian formulation for free infinite spin field theory
In this case the Lagrangian formulation is constructed analogously to previous
case

1 Introduce the Fock space of the vectors |ϕ〉 =
∑∞

s=0 |ϕs〉.
2 Introduce the operators L0, L− µ, L+ − µ.
3 Construct the nilpotent BRST charge

Q = η0L0 + η+(L− µ) + η(L+ − µ) + Kη+ηP0.

4 Introduce the extended Fock space of the vectors

|Φ〉 = |ϕ〉+ η0P+|ϕ1〉+ η+P+|ϕ2〉.
5 Define the Lagrangian

L =

∫
dη0〈Φ|Q|Φ〉

Lagrangian is invariant under the gauge transformation |Φ′〉 = |Φ〉+ Q|Λ〉.
One can show that this Lagrangian is a sum of Lagrangians for free massless
fields plus µ-dependent cross terms responsible for infinite spin field
description. The formulation possesses extremely high gauge symmetry. Using
the various gauge fixing conditions we can derive the various equivalent
Lagrangian formulations.



Generalization for infinite spin fields in AdS4 space
Taking into account the Lagrangian free infinite spin field theory, it is
naturally to try construct a theory in curved space-time. Further I consider
only a generic scheme.

As it was demonstrated, a central element the BRST construction is some
algebra of constraints which became to be a gauge algebra of final
Lagrangian theory. In the previous cases, the constraints and their algebra
was stipulated the conditions defying the irreducible representation of the
Poincáre group. Since the Poincáre group is not a symmetry group of
arbitrary curved space, we should find another way to study.
If we want to preserve the concept of spin in a curved spacetime, we
should restrict ourselves only by the space AdS, where the concept of spin
exists.
However, the infinite spin representation of the AdS group (group
SO(3,2)) does not exist.
However, one can put an aim to construct a formal generalization of free
infinite spin filed Lagrangian formulation to one in AdS space. It can be
do if to construct algebra of constraints in AdS space which will have a
known flat limit in form of algebra of constrains for infinite spin filed
theory in Minkowski space.



Generalization for infinite spin fields in AdS4 space

Surprisingly it can be done!
1 Minimal inclusion of interaction with gravity. We change in the

constraints of flat theory the partial derivatives by covariant ones and
then we check whether the algebra of new constraints is closed. The
algebra is not closed!

2 We add non-minimal terms containing curvature and look for them from
the algebra closure condition. We add non-minimal terms containing
curvature and look for them from the algebra closure condition. This is
not a trivial job at all. A priori there are no guarantees that this can be
done. It turned out that it can be done (I.L.B, S.A. Fedoruk,
A.P. Isaev,V.A.Krykhtin arXiv:2403.14446 [hep-th])!

3 . Taking into account this constraint algebra we apply the BRST
formalism and derive the Lagrangian formulation. As in all previous cases,
this formulation has a large gauge freedom and by applying different
gauges we can obtain formally different but equivalent Lagrangians.



Thank you very much for attention.


