Going beyond Vogel's universality for simple Lie algebras

A. P. Isaev ${ }^{1,2}$

${ }^{1}$ Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna
${ }^{2}$ Chair of Theoretical Physics, Faculty of Physics, M.V.Lomonosov Moscow State University
«Modern mathematics and mathematical physics» the JINR-HSE Workshop, Dubna, 14.06.2024

Content

(1) Vogel parameters, Vogel map and universal Lie algebra
(2) Lie algebras and split Casimir operator (CO)
(3) The 2-split Casimir operator \widehat{C} for simple Lie algebras in ad ${ }^{\otimes 2}$

- Projections $\widehat{C}_{ \pm}$of 2-split CO in ad ${ }^{\otimes 2}$
- Universal characteristic identities for \widehat{C}_{-}for all simple LA
- Universal char identities for \widehat{C}_{+}for LAs of classical series
- Universal char identities for \widehat{C}_{+}for exceptional LA

4. Char. identities for 3, 4 -split Casimir operators in $\mathrm{ad}^{\otimes 3}$ and $\mathrm{ad}^{\otimes 4}$
(5) Beyond Vogel Universality
(6) Conclusion

Vogel parameters, Vogel map and universal Lie algebra.

1. Consider tensor products of r adjoint representations of the simple LA \mathfrak{g} and consider Clebsch-Gordan expansion of these products:

$$
\begin{equation*}
\operatorname{ad}^{\otimes r}:=\underbrace{\operatorname{ad} \otimes \operatorname{ad} \otimes \cdots \otimes \mathrm{ad}}_{r}=\oplus_{\lambda} n_{\lambda} T_{\lambda}, \tag{1}
\end{equation*}
$$

where T_{λ} are irreps, λ - parameters which numerate irreps (e.g. highest weights) and $n_{\lambda} \in \mathbb{Z}_{>0}$ are multiplicities.
2. The elements of the vector space of rep $\mathrm{ad}^{\otimes r}$ are rank r tensors $t^{a_{1} a_{2} \ldots a_{r}}$. Invariant subspaces in $V_{a d}^{\otimes r}$ are spaces of $t^{a_{1} a_{2} \ldots a_{r}}$ with special symmetrization of indices ($a_{1}, a_{2}, \ldots a_{r}$) (according to Young diagrams $\left.\vdash r\right): t_{ \pm}^{a_{1} a_{2}}=\frac{1}{2}\left(t^{a_{1} a_{2}} \pm t^{a_{2} a_{1}}\right)$. Thus, it is possible to group the representations in the r.h.s. of (1) so that the decomposition is converted into

$$
\begin{equation*}
\operatorname{ad}^{\otimes r}=\oplus_{\Lambda} T_{\Lambda}, \quad T_{\Lambda}:=\mathbb{P}_{\Lambda}\left(\operatorname{ad}^{\otimes r}\right) \tag{2}
\end{equation*}
$$

where Λ are Young diagrams $\vdash r$ and T_{Λ} are (reducible) reps in the invariant subspaces which are extracted from $V_{\mathrm{ad}}^{\otimes r}$ by Young projectors \mathbb{P}_{\wedge} related to Λ. The decomposition (2) is universal for all Lie algebras \mathfrak{g}.
3. Amazing fact: it was noticed [P.Deligne (1996), P.Vogel (1999), J.M.Landsberg and L.Manivel (2002),...] that, for first $r=2,3,4$, subreps T_{Λ} in the r.h.s. of $\mathrm{ad}^{\otimes r}=\oplus_{\Lambda} T_{\Lambda}$ can be decomposed further

$$
\begin{equation*}
T_{\Lambda}=\oplus_{c_{\Lambda}} T_{c_{\Lambda}}^{(\Lambda)} \quad \Rightarrow \quad \mathrm{ad}^{\otimes r}=\oplus_{\Lambda} \oplus_{c_{\Lambda}} T_{c_{\Lambda}}^{(\Lambda)} \tag{3}
\end{equation*}
$$

such that decomposition (3) is universal for all simple Lie algebras \mathfrak{g}. Here c_{Λ} are parameters which numerate subreps $T_{c_{\Lambda}}^{(\Lambda)}$ in $T^{(\Lambda)}$; they are related to values of quadratic Casimir.
4. Moreover, there are remarkable universal formulas for $\operatorname{dim}\left(T_{\varsigma_{\Lambda}}^{(\Lambda)}\right)$ for all simple LAs \mathfrak{g}. Formulas for $\operatorname{dim}\left(T_{c_{\Lambda}}^{(\Lambda)}\right)$ are represented as rational and homogeneous symmetric functions of 3 real parameters (α, β, γ) called Vogel parameters, and all simple Lie algebras \mathfrak{g} are special points in the space of (α, β, γ).

Example: $\mathrm{ad}^{\otimes 2}(r=2)$. For all simple LAs (with rank $\left.>1\right)$ we have decomposition

$$
\operatorname{ad}^{\otimes 2}=\mathbb{P}_{\left[1^{2}\right]}\left(\mathrm{ad}^{\otimes 2}\right)+\mathbb{P}_{[2]}\left(\operatorname{ad}^{\otimes 2}\right)=\left(\mathrm{ad}+\mathrm{X}_{2}\right)+(\mathbf{1}+\mathrm{Y}(\alpha)+\mathrm{Y}(\beta)+\mathrm{Y}(\gamma)) .
$$

Dim. formulas for reps in the r.h.s. are homogeneous rational functions in (α, β, γ) (symmetry in (α, β, γ) is permutation of $\mathrm{Y}(\alpha), \mathrm{Y}(\beta), \mathrm{Y}(\gamma)$). First we have famous P.Deligne formula:

$$
\begin{gathered}
\operatorname{dim} \mathfrak{g} \equiv \operatorname{dim}(\mathrm{ad})=\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma}=\frac{(\hat{\alpha}-1)(\hat{\beta}-1)(\hat{\gamma}-1)}{\hat{\alpha} \hat{\beta} \hat{\gamma}}, \\
\hat{\alpha}:=\frac{\alpha}{2 t}, \quad \hat{\beta}:=\frac{\beta}{2 t}, \quad \hat{\gamma}:=\frac{\gamma}{2 t}, \quad t:=\alpha+\beta+\gamma .
\end{gathered}
$$

Also we have

$$
\operatorname{dim}\left(X_{2}\right)=\frac{1}{2} \operatorname{dim} \mathfrak{g}(\operatorname{dim} \mathfrak{g}-3)=\frac{\left(1-\hat{\alpha}^{2}\right)\left(1-\hat{\beta}^{2}\right)\left(1-\hat{\gamma}^{2}\right)}{(\hat{\alpha} \hat{\beta} \hat{\gamma})^{2}}
$$

For $\operatorname{dim}(Y(\alpha)), \ldots$ we have similar formulas.

Since all $\operatorname{dim}\left(T_{c_{\wedge}}\right)$ are homogeneous symmetric functions of Vogel parameters (α, β, γ), it is possible to fix one of them, e.g. $\alpha=-2$. For this choice the sum $t:=\alpha+\beta+\gamma$ coincides with dual Coxeter number h^{\vee}.

Table 1

Type	Lie algebra	α	β	γ	$t=h^{\vee}=\alpha+\beta+\gamma$	$\hat{\gamma}=\frac{\gamma}{2 t}$
A_{n}	$s \ell(n+1)$	-2	2	$n+1$	$n+1$	$1 / 2$
B_{n}	$s o(2 n+1)$	-2	4	$2 n-3$	$2 n-1$	$\frac{2 n-3}{2(2 n-1)}$
C_{n}	$s p(2 n)$	-2	1	$n+2$	$n+1$	$\frac{n+2}{2(n+1)}$
D_{n}	$s o(2 n)$	-2	4	$2 n-4$	$2 n-2$	$\frac{n-2}{2(n-1)}$
G_{2}	\mathfrak{g}_{2}	-2	$10 / 3$	$8 / 3$	4	$1 / 3$
F_{4}	\mathfrak{f}_{4}	-2	5	6	9	$1 / 3$
E_{6}	\mathfrak{e}_{6}	-2	6	8	12	$1 / 3$
E_{7}	\mathfrak{e}_{7}	-2	8	12	18	$1 / 3$
E_{8}	\mathfrak{e}_{8}	-2	12	20	30	$1 / 3$

Note that, for all exceptional Lie algebras we have $2 t=3 \gamma \rightarrow \hat{\gamma}=1 / 3$.

Since all $\operatorname{dim}\left(T_{C_{\wedge}}\right)$ are homogeneous symmetric functions of the Vogel parameters, one can consider all simple Lie algebras as points on the 2d plane $\mathcal{P}_{(\alpha=-2)}$ in 3d space of the Vogel parameters (α, β, γ). More precisely they are points in $\mathbb{R P}^{2} / S_{3}$ (the Vogel map).

Before we represent the Vogel map, we note that condition $2 t=3 \gamma$, for exceptional LAs, defines the line $(\gamma+4)=2 \beta$ on the plane $\mathcal{P}_{(\alpha=-2)} \in \mathbb{R}^{3}$. Remarkable fact: points of Lie algebras $s \ell(3)$ and so(8) are also on this line.

Type	Lie algebra	α	β	γ	$t=h^{\nabla}=\alpha+\beta+\gamma$	$\hat{\gamma}=\frac{\gamma}{2 t}$
A_{2}	$s \ell(3)$	-2	2	3	3	$\frac{\beta}{2 t}=1 / 3$
D_{4}	so(8)	-2	4	4	6	$1 / 3$
G_{2}	\mathfrak{g}_{2}	-2	$10 / 3$	$8 / 3$	4	$1 / 3$
F_{4}	\mathfrak{f}_{4}	-2	5	6	9	$1 / 3$
E_{6}	\mathfrak{e}_{6}	-2	6	8	12	$1 / 3$
E_{7}	\mathfrak{e}_{7}	-2	8	12	18	$1 / 3$
E_{8}	\mathfrak{e}_{8}	-2	12	20	30	$1 / 3$

Unified description of all simple LA by means of 3 parameters (α, β, γ) leads to the conjecture of existing the universal LA.

Vogel map (1999)

Example: ad $^{\otimes 2},(r=2)$. For all simple LAs (with rank >1) we have decomposition

$$
\operatorname{ad}^{\otimes 2}=\mathbb{A}\left(\mathrm{ad}^{\otimes 2}\right)+\mathbb{S}\left(\mathrm{ad}^{\otimes 2}\right)=\left(\mathrm{ad}+\mathrm{X}_{2}\right)+(\mathbf{1}+\mathrm{Y}(\alpha)+\mathrm{Y}(\beta)+\mathrm{Y}(\gamma))
$$

Dim. formulas for reps are homogeneous rational functions in (α, β, γ) (symmetry in (α, β, γ) is permutation of $\mathrm{Y}(\alpha), \mathrm{Y}(\beta), \mathrm{Y}(\gamma))$ [Vogel $(1999)]$:

$$
\begin{equation*}
\operatorname{dim}(\mathrm{ad}) \equiv \operatorname{dim} \mathfrak{g}=\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma}, \quad t:=\alpha+\beta+\gamma \tag{4}
\end{equation*}
$$

$$
\operatorname{dim}\left(\mathrm{X}_{2}\right)=\frac{1}{2} \operatorname{dim} \mathfrak{g}(\operatorname{dim} \mathfrak{g}-3),\left.\quad 20\right|_{s /(3)},\left.350\right|_{s o(8)}, \quad \operatorname{dim}(1)=1
$$

$$
\begin{gathered}
\operatorname{dim} \mathrm{Y}(\alpha)=\frac{(2 t-3 \alpha)(\beta-2 t)(\gamma-2 t) t(\beta+t)(\gamma+t)}{\alpha^{2}(\alpha-\beta)(\alpha-\gamma) \beta \gamma},\left.\quad 27\right|_{s /(3)} \sim[4,2],\left.300\right|_{s o(8)} \\
\operatorname{dim} Y(\beta)=\left.\operatorname{dim} Y(\alpha)\right|_{\alpha \leftrightarrow \beta},\left.\quad 0\right|_{s /(3)}, \quad \frac{0}{0}=35,35^{\prime},\left.35^{\prime \prime}\right|_{s o(8)} \\
\operatorname{dim} Y(\gamma)=\left.\operatorname{dim} Y(\alpha)\right|_{\alpha \leftrightarrow \gamma},\left.\quad 8\right|_{s /(3)}, \quad \frac{0}{0}=\left.0\right|_{s o(8)}
\end{gathered}
$$

In the rhs we give dims for two "exceptional" algebras $\mathfrak{s l}_{3}, \mathfrak{s o}_{8}$.
Remark. For the exceptional line $2 t=3 \gamma$, we have $\operatorname{dim} \mathrm{Y}(\gamma)=0$. It means that, for axceptional LA, in the decomposition of $\mathrm{ad}^{\otimes 2}$, the representation $\mathrm{Y}(\gamma)$ is missing:

$$
\begin{equation*}
\operatorname{ad}^{\otimes 2}=\mathbb{A}\left(\operatorname{ad}^{\otimes 2}\right)+\mathbb{S}\left(\operatorname{ad}^{\otimes 2}\right)=\left(\operatorname{ad}+X_{2}\right)+(\mathbf{1}+\mathrm{Y}(\alpha)+\mathrm{Y}(\beta)) \tag{5}
\end{equation*}
$$

Some achievements in the universal description of simple LA \& LG. 1.) The generating function of universal eigenvalues $C_{a d}^{(k)}$ of the higher Casimir operators in the ad-representation of \mathfrak{g} [R.Mkrtchyan, A.Sergeev and A.Veselov (2012)]

$$
\begin{aligned}
\hat{C}(z)=\sum_{k=0}^{\infty} C_{\mathrm{ad}}^{(k)} z^{k}= & \frac{1}{\operatorname{dim}(\mathfrak{g})}\left(\frac{1}{1+z}+\frac{\operatorname{dim} Y(\alpha)}{1+\frac{2 \alpha}{2 t}}+\frac{\operatorname{dim} Y(\beta)}{1+\frac{z \beta}{2 t}}+\frac{\operatorname{dim} Y(\gamma)}{1+\frac{2 \gamma}{2 t}}\right)+ \\
& +\frac{1}{2} \operatorname{dim}(\mathfrak{g})+\frac{1}{1+\frac{z}{2}}-\frac{3}{2} .
\end{aligned}
$$

2.) Formula for volumes of compact simple Lie groups G [R.Mkrtchyan, A.Veselov]

$$
\operatorname{Vol}(G)=\left(2^{3 / 2} \pi\right)^{\operatorname{dimg}} e^{-\Phi(\alpha, \beta, \gamma)}
$$

where $\Phi(\alpha, \beta, \gamma)=\int_{0}^{\infty} d z \frac{F(z / t)}{z\left(e^{2}-1\right)}$ and

Here the first term in rhs is the deformation of the universal formula (4) for $\operatorname{dim} \mathfrak{g}=\frac{(\alpha-2 t)(\beta-2 t)(\gamma-2 t)}{\alpha \beta \gamma}$ (it is clear that $\left.\left.F(z)\right|_{z=0}=0\right)$.

A Lie group G is a smooth manifold. Consider the tangent vector space $T_{e}(G)$ to the Lie group G at the unit element $e \in G$.
Definition. The tangent vector space $T_{e}(G)$, equipped with the multiplication $\left[A_{1}, A_{2}\right] \in T_{e}(G)\left(\forall A_{1}, A_{2} \in T_{e}(G)\right)$ with axioms:

1) Anticommutativity: $\left[A_{1}, A_{2}\right]=-\left[A_{2}, A_{1}\right]$,
2) Jacoby identity: $\left[\left[A_{1}, A_{2}\right], A_{3}\right]+\left[\left[A_{3}, A_{1}\right], A_{2}\right]+\left[\left[A_{2}, A_{3}\right], A_{1}\right]=0$, is called the Lie algebra \mathfrak{g} of the Lie group G.

Let $\left.X_{a}\right|_{a=1, \ldots, \operatorname{dimg}} \in T_{e}(G)$ be basis elements of Lie algebra (LA) \mathfrak{g} :

$$
\begin{equation*}
\left[X_{a}, X_{b}\right]=C_{a b}^{d} X_{d}, \tag{7}
\end{equation*}
$$

$C_{a b}^{d}$ - are structure constants. Matrices $\operatorname{ad}\left(X_{a}\right)_{b}^{d}=C_{a b}^{d}$ define the adjoint representation of \mathfrak{g}. The invariant Cartan-Killing metric in $T_{e}(G)$ is

$$
\begin{equation*}
\operatorname{g}_{a b} \equiv \operatorname{Tr}\left(\operatorname{ad}\left(X_{a}\right) \cdot \operatorname{ad}\left(X_{b}\right)\right)=C_{a c}^{d} C_{b d}^{c} . \tag{8}
\end{equation*}
$$

For simple Lie algebras, the metric $g_{a b}$ is invertible:

$$
g_{a b} \mathrm{~g}^{b c}=\delta_{a}^{c},
$$

and unique up to a normalization factor: $\mathrm{g}_{a b} \rightarrow \lambda \mathrm{~g}_{a b}$.
For compact Lie algebras \mathfrak{g}, one can chose the basis: $\mathrm{g}_{a b}=-\delta_{a b}$.
The classification of simple Lie algebras (E.Cartan-H.Weyl):
4 infinite series (accidental isomorphisms are not taken into account):

$$
\begin{aligned}
& \text { 1. } A_{n}: \mathfrak{s l}(n+1) ; \quad 2 . B_{n}: \mathfrak{s o}(2 n+1) ; \quad 3 . C_{n}: \mathfrak{s p}(2 n) ; \quad \text { 4. } D_{n}: \mathfrak{s o}(2 n) ; \\
& \operatorname{dim} \mathfrak{s l}(N)=N^{2}-1, \quad \operatorname{dim} \mathfrak{s o}(N)=\frac{N(N-1)}{2}, \quad \operatorname{dim} \mathfrak{s p}(N)=\frac{N(N+1)}{2},
\end{aligned}
$$

and 5 exceptional LA: $\mathfrak{g}_{2}, \mathfrak{f}_{4}, \mathfrak{e}_{6}, \mathfrak{e}_{7}, \mathfrak{e}_{8}$ with dims: $14,52,78,133,248$.

The main object is split (or polarized) Casimir operator of LA \mathfrak{g} is

$$
\begin{equation*}
\widehat{C}=\mathrm{g}^{a b} X_{b} \otimes X_{a} \equiv X^{a} \otimes X_{a} \in \mathfrak{g} \otimes \mathfrak{g} \tag{9}
\end{equation*}
$$

The operator \widehat{C} is independent of the choice of the basis X_{a} in \mathfrak{g} and is related to the standard quadratic Casimir operator (central element in the enveloping algebra $\mathcal{U}(\mathfrak{g})$)

$$
\begin{equation*}
C^{(2)}=\mathrm{g}^{a b} X_{b} \cdot X_{a} \in \mathcal{U}(\mathfrak{g}) \tag{10}
\end{equation*}
$$

Relation is via comultiplication $\Delta\left(X_{a}\right)=\left(X_{a} \otimes I+I \otimes X_{a}\right)$:

$$
\begin{gather*}
\Delta\left(C^{(2)}\right)=\Delta\left(X^{a}\right) \cdot \Delta\left(X_{a}\right)=C^{(2)} \otimes I+I \otimes C^{(2)}+2 \widehat{C} \quad \Rightarrow \\
\widehat{C}=\frac{1}{2}\left(\Delta\left(C^{(2)}\right)-C^{(2)} \otimes I-I \otimes C^{(2)}\right) . \tag{11}
\end{gather*}
$$

Remark. The split Casimir operator \widehat{C} commutes with the action of \mathfrak{g} :

$$
[\Delta(A), \widehat{C}]=[(A \otimes I+I \otimes A), \widehat{C}]=0, \quad \forall A \in \mathfrak{g}
$$

Split Casimir operator \widehat{C} appears in many applications: in the RT , in the theory of integrable systems, as colour factors in the nonabelian gauge theories, ...

1) Higher Casimir operators $C^{(k)}$ (for $k>2$) are constructed via split operator C [S.Okubo, J. Math. Phys. 18(1977) 2382; A.P.I. and V.A. Rubakov, Theory of Groups and Symmetries, WS (2018)]. Indeed, define

$$
(\widehat{C})^{k}=X_{a_{1}} \cdots X_{a_{k}} \otimes X^{a_{1}} \cdots X^{a_{k}} \in \mathcal{U}(\mathfrak{g}) \otimes \mathcal{U}(\mathfrak{g})
$$

then we take ad-representation in the second factor and then take trace

$$
C^{(k)}=\operatorname{Tr}_{2}\left((I \otimes \mathrm{ad}) \widehat{C}^{k}\right)=X_{a_{1}} \cdots X_{a_{k}} \underbrace{\operatorname{Tr}\left(\operatorname{ad}\left(X^{a_{1}} \cdots X^{a_{k}}\right)\right)}_{d^{a_{1} \cdots a_{k}}} \in \mathcal{U}(\mathfrak{g}) .
$$

2) Kohno-Drinfeld Lie algebra and k-split Casimir operator

We define

$$
\widehat{C}_{i j}:=\mathrm{g}^{a b}\left(I^{\otimes(i-1)} \otimes X_{a} \otimes I^{\otimes(j-i-1)} \otimes X_{b} \otimes I^{\otimes(n-j)}\right) \in \mathcal{U}(\mathfrak{g})^{\otimes n} .
$$

Defining relations for Kohno-Drinfeld Lie algebra

$$
\left[\widehat{C}_{i j}, \widehat{C}_{i k}+\widehat{C}_{j k}\right]=0, \quad\left[\widehat{c}_{i j}, \widehat{C}_{k \ell}\right]=0
$$

n-split Casimir operator: $\widehat{C}_{(n)}:=\sum_{i<j}^{n} \widehat{C}_{i j}$ - Hamiltonians for nonlocal spin chains.

Let T and \widetilde{T} be two representations of \mathfrak{g}. One can visualize split Casimir operator in the representation $T \otimes \widetilde{T}$:

$$
\begin{equation*}
\left(T_{\beta}^{\alpha} \otimes \widetilde{T}_{B}^{A}\right) \widehat{C}=\mathrm{g}^{a b} T_{\beta}^{\alpha}\left(X_{a}\right) \widetilde{T}_{B}^{A}\left(X_{b}\right) \equiv \mathrm{g}^{a b}\left(T_{a}\right)_{\beta}^{\alpha}\left(\widetilde{T}_{b}\right)_{B}^{A}, \tag{12}
\end{equation*}
$$

where $\alpha, \beta=1, \ldots, \operatorname{dim} T$ and $A, B=1, \ldots, \operatorname{dim} \tilde{T}$:

Colour factor for the Feynman diagram describing scattering of two particles in the representations T and \widetilde{T} by gauge field $A \in \mathfrak{g}$.

Let $T_{\lambda_{1}}$ and $T_{\lambda_{2}}$ be two irreps of \mathfrak{g} with highest weights λ_{1} and λ_{2} acting in spaces $\mathcal{V}_{\lambda_{1}}$ and $\mathcal{V}_{\lambda_{2}}$. Consider the decomposition $T_{\lambda_{1}} \otimes T_{\lambda_{2}}=\sum_{\lambda} n_{\lambda} T_{\lambda}$, where T_{λ} are irreps with HW λ and n_{λ} are their multiplicity. Denote the space of T_{λ} as \mathcal{V}_{λ}. Then, from relation $\Delta\left(C^{(2)}\right)=C^{(2)} \otimes I+I \otimes C^{(2)}+2 \widehat{C}$ we obtain

$$
\widehat{C}_{\lambda_{1} \times \lambda_{2}} \cdot \mathcal{V}_{\lambda}=\frac{1}{2}\left(c_{2}^{(\lambda)}-c_{2}^{\left(\lambda_{1}\right)}-c_{2}^{\left(\lambda_{2}\right)}\right) \mathcal{V}_{\lambda} .
$$

Here $\widehat{C}_{\lambda_{1} \times \lambda_{2}}:=\left(T_{\lambda_{1}} \otimes T_{\lambda_{2}}\right)(\widehat{C})$ and $c_{2}^{(\lambda)}=(\lambda, \lambda+2 \delta)$ is the value of $C^{(2)}$ on irrep $T_{\lambda} ; \delta=\frac{1}{2} \sum_{\alpha>0} \alpha$. Note that $T(\widehat{C})$ is diagonalizable for simple LA in any T, but in general its spectrum is degenerate. It implies the characteristic identity

$$
\prod_{\lambda}^{\prime}\left(\widehat{C}_{\lambda_{1} \times \lambda_{2}}-\hat{c}_{\lambda_{1}, \lambda_{2}}^{\lambda}\right)=0, \quad \hat{c}_{\lambda_{1}, \lambda_{2}}^{\lambda}:=\frac{1}{2}\left(c_{2}^{(\lambda)}-c_{2}^{\left(\lambda_{1}\right)}-c_{2}^{\left(\lambda_{2}\right)}\right),
$$

where \prod_{λ}^{\prime} means that the product runs over only those λ that corresponds to unequal eigenvalues $\hat{c}_{\lambda_{1}, \lambda_{2}}^{\lambda}$. Then we find projectors in $T_{\lambda_{1} \times \lambda_{2}}:=T_{\lambda_{1}} \otimes T_{\lambda_{2}}$ onto invariant subspaces of $\widehat{C}_{\lambda_{1} \times \lambda_{2}}$ with eigenvalues $a_{\lambda}:=\hat{c}_{\lambda_{1}, \lambda_{2}}^{\lambda}$:

$$
\mathrm{P}_{\left(a_{\lambda}\right)}=\prod_{\mu \neq \lambda} \frac{\left(\widehat{C}_{\lambda_{1} \times \lambda_{2}}-a_{\mu}\right)}{a_{\lambda}-a_{\mu}} \quad \Rightarrow \quad T_{\lambda_{1} \times \lambda_{2}}=\sum_{j} \mathrm{P}_{\left(a_{\lambda}\right)} \cdot\left(T_{\lambda_{1} \times \lambda_{2}}\right) .
$$

The invariant subspaces of $\mathrm{P}_{\left(\mathrm{a}_{\lambda}\right)} \cdot\left(T_{\lambda_{1} \times \lambda_{2}}\right)$ are called Casimir subspaces.

Our method of universal description of LA is based on the extracting of invariant subspaces in $V_{\mathrm{ad}}^{\otimes r}=\mathrm{ad}^{\otimes r}$ by means of the char．ident．for r－split CO $\widehat{C}_{\mathrm{ad}}$ ．

The split Casimir operators and universality in $\mathrm{ad}^{\otimes 2}$ ：

$$
\left(\widehat{C}_{\mathrm{ad}}\right)_{b_{1} b_{2}}^{a_{1} a_{2}}(\mathrm{ad} \otimes \mathrm{ad})_{b_{1} b_{2}}^{a_{1} a_{2}}\left(X_{h} \otimes X^{h}\right)=\left(X_{h}\right)_{b_{1}}^{a_{1}}\left(X^{h}\right)_{b_{2}}^{a_{2}}=C_{h b_{1}}^{a_{1}} C_{f b_{2}}^{a_{2}} \mathrm{~g}^{h f},
$$

acts in the space $V_{\mathrm{ad}}^{\otimes 2}$ and $V_{\mathrm{ad}} \simeq \mathrm{ad} \simeq \mathfrak{g}$ is the space of ad－representation．Since ad－representation embedded in $T \otimes\left(T^{\top}\right)^{-1}$ ，one can consider adj．indices a, b, c, \ldots as pairs of fundamental and antifundamental indices
$a=(i, \bar{j}), b=(k, \bar{\ell}), \ldots$. In view of this，matrices $\left(\widehat{C}_{\text {ad }}\right)_{b_{1} b_{2}}^{a_{1} a_{2}}$ can be represented as Feynman＂colour＂diagrams（oriented and not oriented lines correspond to $\mathfrak{s l}_{N}$ and $\mathfrak{s o}_{N}, \mathfrak{s p}_{2 n}$ cases）

$$
\left(\widehat{C}_{a d}\right)_{b_{1} b_{2}}^{a_{1} a_{2}}=C_{h b_{1}}^{a_{1}} C_{f b_{2}}^{a_{2}} g^{h f}=
$$

Our aim is to find char．identity $\prod_{i=1}^{k}\left(\widehat{C}_{a d}-a_{i}\right)=0$ for split CO $\widehat{C}_{\text {ad }}$ ．Then we find k projectors in $\mathrm{ad}^{\otimes 2}$ onto invariant subspaces of $\widehat{C}_{\text {ad }}$ with eigenvalues a_{j} ：

$$
P_{\left(a_{j}\right)}=\prod_{i \neq j} \frac{\left(\widehat{C}_{\text {ad }}-a_{i}\right)}{a_{j}-a_{i}} \quad \Rightarrow \quad \mathrm{ad}^{\otimes 2}=\sum_{j^{\square}} P_{\left(a_{j}\right)} \cdot\left(\mathrm{ad}^{\otimes 2}\right) .
$$

Introduce symmetrized and antisymmetrized parts of $\widehat{C}_{\text {ad }}$

$$
\widehat{C}_{ \pm}=\mathbf{P}_{ \pm}^{(a d)} \widehat{C}_{\mathrm{ad}}, \quad\left(\widehat{C}_{ \pm}\right)_{b_{1} b_{2}}^{a_{1} a_{2}}=\frac{1}{2}\left(\left(\widehat{C}_{\mathrm{ad}}\right)_{b_{1} b_{2}}^{a_{1} a_{2}} \pm\left(\widehat{C}_{\mathrm{ad}}\right)_{b_{1} b_{2}}^{a_{2} a_{1}}\right),
$$

where $\mathbf{P}_{+}^{(a d)}=\frac{1}{2}(\mathbf{I}+\mathbf{P})$ and $\mathbf{P}_{-}^{(a d)}=\frac{1}{2}(\mathbf{I}-\mathbf{P})$ are projectors on symmetric \widehat{C}_{+} and antisymmetric \widehat{C}_{-}parts of $\widehat{C}_{\text {ad }}$ in $\left(V_{a d}\right)^{\otimes 2} \simeq \mathrm{ad}^{\otimes 2}$.
Proposition 1. For all simple $L A \mathfrak{g}$ the SCO \widehat{C}_{-}satisfy char. identity

$$
\begin{equation*}
\widehat{C}_{-}\left(\widehat{C}_{-}+\frac{1}{2}\right)=0 \Leftrightarrow \widehat{C}_{-}^{2}=-\frac{1}{2} \widehat{C}_{-}, \tag{13}
\end{equation*}
$$

Since identity (13) is quadratic, we have two projectors $\mathrm{P}_{(0)}, \mathrm{P}_{\left(-\frac{1}{2}\right)}$ on two subrepresentations X_{1}, X_{2}

$$
\mathbf{P}_{-}^{(\mathrm{ad})}(\mathrm{ad} \otimes \mathrm{ad})=\mathrm{P}_{(0)}(\mathrm{ad} \otimes \mathrm{ad})+\mathrm{P}_{\left(-\frac{1}{2}\right)}(\mathrm{ad} \otimes \mathrm{ad})=\mathrm{X}_{1}+\mathrm{X}_{2}=\mathrm{ad}+\mathrm{X}_{2},
$$

where $\operatorname{dim} X_{1}=\operatorname{Tr}\left(P_{(0)}\right)=\operatorname{dim} \mathfrak{g}, \quad \operatorname{dim} X_{2}=\operatorname{Tr}\left(P_{\left(-\frac{1}{2}\right)}\right)=\frac{1}{2} \operatorname{dim} \mathfrak{g}(\operatorname{dim} \mathfrak{g}-3)$.

Proposition 2. For all LA of the classical series $A_{n}=\mathfrak{s l}_{n+1}, B_{n}=\mathfrak{s o}_{2 n+1}$, $C_{n}=\mathfrak{s p}_{2 n}, D_{n}=\mathfrak{s o}_{2 n}$ (except $\mathfrak{s l}_{3}$ and $\mathfrak{s o}_{8}$), in ad-representation, \widehat{C}_{+}has the universal char identity

$$
\begin{equation*}
\left(\widehat{C}_{+}+1\right)\left(\widehat{C}_{+}+\frac{\alpha}{2 t}\right)\left(\widehat{C}_{+}+\frac{\beta}{2 t}\right)\left(\widehat{C}_{+}+\frac{\gamma}{2 t}\right) \mathbf{P}_{+}^{\text {(ad) }}=0, \quad \# 4 \tag{14}
\end{equation*}
$$

where $\left(\frac{\alpha}{2 t}+\frac{\beta}{2 t}+\frac{\gamma}{2 t}\right)=1 / 2 \Rightarrow(t=\alpha+\beta+\gamma)$. The values of the Vogel parameters α, β, γ for $s \ell(N), s o(N), s p(N)$ are given in Table 1.

From char. identity (14), we deduce four universal projectors $P_{\left(a_{i}\right)}^{(+)}$on the invariant subspaces $V_{\left(a_{i}\right)} \subset \mathbf{P}_{+}^{(a d)}\left(V_{a d}^{\otimes 2}\right)$ (with eigenvalues a_{i} of \widehat{C}_{+})

$$
\begin{gathered}
\mathbf{P}_{+}^{(\mathrm{ad})}\left(V_{\mathrm{ad}}^{\otimes 2}\right)=\left(\mathrm{P}_{(-1)}^{(+)}+\mathrm{P}_{\left(-\frac{\alpha}{2 t}\right)}^{(+)}+\mathrm{P}_{\left(-\frac{\beta}{2 t)}\right.}^{(+)}+\mathrm{P}_{\left(-\frac{\alpha}{2 t}\right)}^{(+)}\right) V_{\mathrm{ad}}^{\otimes 2}= \\
=V_{(-1)}^{\otimes 2}+V_{\left(-\frac{\alpha}{2 t}\right)}^{\left(V_{\left(-\frac{\beta}{2 t}\right)}+V_{\left(-\frac{\gamma}{2 t}\right)} .\right.} \\
\mathrm{P}_{\left(-\frac{\alpha}{2 t}\right)}^{(+)}=\mathrm{P}^{(+)}(\alpha \mid \beta, \gamma), \quad \mathrm{P}_{\left(-\frac{\beta}{2 t}\right)}^{(+)}=\mathrm{P}^{(+)}(\beta \mid \alpha, \gamma), \quad \mathrm{P}_{\left(-\frac{\gamma}{2 t}\right)}^{(+)}=\mathrm{P}^{(+)}(\gamma \mid \alpha, \beta) .
\end{gathered}
$$

The representations of \mathfrak{g} in the subspaces $V_{(-1)}, V_{\left(-\frac{\alpha}{2 t}\right)}, V_{\left(-\frac{\beta}{2 t}\right)}, V_{\left(-\frac{\gamma}{2 t}\right)}$ were respectively denoted by Vogel as $\mathrm{X}_{0}=\mathbf{1}, Y_{2}(\alpha), Y_{2}(\beta), Y_{2}(\gamma)$

$$
\mathbf{P}_{+}^{(\mathrm{ad})}\left(\mathrm{ad}^{\otimes 2}\right)=\mathrm{X}_{0}+Y_{2}(\alpha)+Y_{2}(\beta)+Y_{2}(\gamma) \text {. }
$$

Thus, Prop. 1,2 justify the Vogel statement for LA of classical series. Theorem. (P.Vogel, 1999)

$$
\mathrm{ad}^{\otimes 2}=\mathbf{P}_{-}^{(\mathrm{ad})}\left(\mathrm{ad}^{\otimes 2}\right)+\mathbf{P}_{+}^{(\mathrm{ad})}\left(\mathrm{ad}^{\otimes 2}\right)=\left(\mathrm{ad}+\mathrm{X}_{2}\right)+(\mathbf{1}+\mathrm{Y}(\alpha)+\mathrm{Y}(\beta)+\mathrm{Y}(\gamma))
$$

Finally, we calculate (by means of trace formulas) the Vogel universal expressions for the dim of the invariant eigenspaces $V_{\left(a_{i}\right)}$:

$$
\operatorname{dim} V_{(-1)}=\operatorname{Tr} P_{(-1)}^{(+)}=1
$$

$$
\operatorname{dim} Y_{2}(\alpha) \equiv \operatorname{dim} V_{\left(-\frac{\alpha}{2 t}\right)}=\operatorname{Tr} \mathrm{P}_{\left(-\frac{\alpha}{2 t}\right)}^{(+)}=-\frac{(3 \alpha-2 t)(\beta-2 t)(\gamma-2 t) t(\beta+t)(\gamma+t)}{\alpha^{2}(\alpha-\beta) \beta(\alpha-\gamma) \gamma}
$$

$$
\operatorname{dim} Y_{2}(\beta) \equiv \operatorname{dim} V_{\left(-\frac{\beta}{2 t}\right)}=\operatorname{Tr} P_{\left(-\frac{\beta}{2 t}\right)}^{(+2 t)}=-\frac{(3 \beta-2 t)(\alpha-2 t)(\gamma-2 t) t(\alpha+t)(\gamma+t)}{\beta^{2}(\beta-\alpha) \alpha(\beta-\gamma) \gamma}
$$

$$
\operatorname{dim} Y_{2}(\gamma) \equiv \operatorname{dim} V_{\left(-\frac{\gamma}{2 t}\right)}=\operatorname{Tr} P_{\left(-\frac{\gamma}{2 t}\right)}^{(+2 t)}=-\frac{(3 \gamma-2 t)(\beta-2 t)(\alpha-2 t) t(\beta+t)(\alpha+t)}{\gamma^{2}(\gamma-\beta) \beta(\gamma-\alpha) \alpha}
$$

Remark 1. The cases of algebras $\mathfrak{s l}_{3}$ and $\mathfrak{s o}_{8}$ are exceptional - their char. identity (for symmetric part of \widehat{C}) has the order 3.
Remark 2. For exceptional LA cases $\frac{\gamma}{2 t}=\frac{1}{3}$ and we have $\operatorname{dim} Y_{2}(\gamma)=0$.

Universal char identities for \widehat{C} for exceptional Lie algebras in $\mathrm{ad}^{\otimes 2}$. The antisymmetric \widehat{C}_{-}and symmetric \widehat{C}_{+}parts of the split Casimir operators in the ad-representation for all exceptional Lie algebras \mathfrak{g} obey the universal identities

$$
\begin{equation*}
\widehat{C}_{-}\left(\widehat{C}_{-}+\frac{1}{2}\right)=0 \tag{15}
\end{equation*}
$$

$$
\left(\widehat{C}_{+}+1\right)\left(\widehat{C}_{+}^{2}+\frac{1}{6} \widehat{C}_{+}-2 \mu\right) \mathbf{P}_{+}^{(\mathrm{ad})}=0, \quad \# 3
$$

where the universal parameter μ is fixed as follows

$$
\begin{equation*}
\mu=\frac{5}{6(2+\operatorname{dim}(\mathfrak{g}))}, \tag{16}
\end{equation*}
$$

and for algebras $\mathfrak{g}_{2}, \mathfrak{f}_{4}, \mathfrak{e}_{6}, \mathfrak{e}_{7}, \mathfrak{e}_{8}$ with dimensions $14,52,78,133,248$ we have respectively $\mu=\frac{5}{96}, \frac{5}{324}, \frac{1}{96}, \frac{1}{162}, \frac{1}{300}$.
Moreover the char identities for \widehat{C}_{+}for algebras $\mathfrak{s} l_{3}$ and $\mathfrak{s o}_{8}$ have the same structure (15) with $\mu=\frac{1}{12}$ and $\mu=\frac{1}{36}$.

From (15) we obtain the factorized form of the universal char. identity for \widehat{C}_{+}

$$
\begin{equation*}
\left(\widehat{C}_{+}+1\right)\left(\widehat{C}_{+}^{2}+\frac{1}{6} \widehat{C}_{+}-2 \mu\right) \mathbf{P}_{+}^{(\mathrm{ad})} \equiv\left(\widehat{C}_{+}+1\right)\left(\widehat{C}_{+}+\frac{\alpha}{2 t}\right)\left(\widehat{C}_{+}+\frac{\beta}{2 t}\right) \mathbf{P}_{+}^{(\mathrm{ad})}=0 \tag{17}
\end{equation*}
$$

where we introduced the notation for two roots of eq. $\widehat{C}_{+}^{2}+\frac{1}{6} \widehat{C}_{+}-2 \mu=0$:

$$
\begin{equation*}
\frac{\alpha}{2 t}=\frac{1-\mu^{\prime}}{12}, \quad \frac{\beta}{2 t}=\frac{1+\mu^{\prime}}{12}, \quad \mu^{\prime}:=\sqrt{1+288 \mu}=\sqrt{\frac{\operatorname{dim} \mathfrak{g}+242}{\operatorname{dim} \mathfrak{g}+2}} . \tag{18}
\end{equation*}
$$

These roots are related by $3(\alpha+\beta)=t$, and for $\alpha=-2$ this relation defines the line of the exceptional LA on the $\operatorname{Vogel}(\beta, \gamma)$ plane (as we discussed above). We note that μ^{\prime} is a rational number (since $\frac{\alpha}{2 t}$ and $\frac{\beta}{2 t}$ are rational) only for certain finite sequence of $\operatorname{dim} \mathfrak{g}$:

$$
\begin{gather*}
\operatorname{dim} \mathfrak{g}=3,8,14,28,47,52,78,96,119,133,190,248,287,336, \tag{19}\\
484,603,782,1081,1680,3479,
\end{gather*}
$$

which includes the dimensions $14,52,78,133,248$ of the exceptional Lie algebras $\mathfrak{g}_{2}, \mathfrak{f}_{4}, \mathfrak{e}_{6}, \mathfrak{e}_{7}, \mathfrak{e}_{8}$, and the dimensions 8 and 28 of $s \ell(3)$ and so(8), which are sometimes also referred to as exceptional. Dim. 190 corresponds to $\mathfrak{e}_{7+\frac{1}{2}}$.

Remark. The sequence (19) contains $\operatorname{dim} \mathfrak{g}^{*}=(10 m-122+360 / m),(m \in \mathbb{N})$ referring to the adjoint representations of the so-called E_{8} family of algebras \mathfrak{g}^{*}; see the Cvitanović book. For such dimensions we have relation $\mu^{\prime}=|(m+6) /(m-6)|$. Two numbers 47 and 119 from sequence (19) do not belong to the sequence $\operatorname{dim} \mathfrak{g}^{*}$. Thus, the interpretation of these two numbers as the dimensions of some algebras is missing. Moreover, for values $\operatorname{dim} \mathfrak{g}$ given in (19), using (18), one can calculate dimensions of the corresponding representations $Y(\alpha)$:

$$
\begin{gathered}
\operatorname{dim} V_{\left(-\frac{\alpha}{2 t}\right)}=\left\{5,27,77,300, \frac{14553}{17}, 1053,2430, \frac{48608}{13}, \frac{111078}{19}, 7371,15504,\right. \\
\left.27000, \frac{841279}{23}, \frac{862407}{17}, 107892, \frac{220525}{13}, \frac{578151}{2}, 559911, \frac{42507504}{31}, \frac{363823677}{61}\right\}
\end{gathered}
$$

Since $\operatorname{dim} V_{\left(-\frac{\alpha}{2 t}\right)}$ should be integer, we conclude that there not exist Lie algebras with dimensions $47,96,119,287,336,603,782,1680,3479$, for which we assume characteristic identity (17) and the trace formulas.

Universal formulas for 3-split Casimir operator in ad ${ }^{\otimes 3}$

The matrix $\widehat{C}_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}:=\left(\widehat{C}_{(3)}\right)_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}$ of the 3-split Casimir operator is

$$
\begin{equation*}
\left(\widehat{C}_{(3)}\right)_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}}=\left(\widehat{C}_{12}+\widehat{C}_{13}+\widehat{C}_{23}\right)_{b_{1} b_{2} b_{3}}^{a_{1} a_{2} a_{3}} \tag{20}
\end{equation*}
$$

and acts in the space $V_{\mathrm{ad}}^{\otimes 3}$ of the representation ad ${ }^{\otimes 3}$.

According to

$$
\mathrm{ad}^{\otimes 3}=\left(\mathrm{P}_{[3]}+\mathrm{P}_{[2,1]}+\mathrm{P}_{\left[1^{3}\right]}\right) \mathrm{ad}^{\otimes 3},
$$

we have decomposition

$$
\widehat{C}_{(3)}=\left(\mathrm{P}_{[3]}+\mathrm{P}_{[2,1]}+\mathrm{P}_{\left[1^{3}\right]}\right) \widehat{C}_{(3)}=\widehat{C}_{[3]}+\widehat{C}_{[2,1]}+\widehat{C}_{\left[1^{3}\right]} .
$$

A.P. Isaev, S.O. Krivonos, A.A. Provorov,

Int.J.Mod.Phys.A 38 (2023) 06n07, 2350037; e-Print: 2212.14761 [math-ph] All calculations were done with "Mathematica".
Proposition 3. For 3-split Casimirs $\widehat{C}_{\left[1^{3}\right]}, \widehat{C}_{[3]}$ and $\widehat{C}_{[2,1]}$ we have the universal char. identities

$$
\begin{align*}
& \hat{c}_{\left[1^{3}\right]}\left(\hat{c}_{\left[1^{3}\right]}+\frac{1}{2}\right)\left(\hat{c}_{\left[1^{3}\right]}+\frac{3}{2}\right)\left(\hat{c}_{\left[1^{3}\right]}+\frac{1}{2}+\hat{\alpha}\right)\left(\hat{c}_{\left[1^{3}\right]}+\frac{1}{2}+\hat{\beta}\right)\left(\hat{c}_{\left[1^{3}\right]}+\frac{1}{2}+\hat{\gamma}\right)=0, \quad \# 6 \\
& \left(\hat{C}_{[3]}+\frac{1}{2}\right)\left(\hat{C}_{[3]}+1\right)\left(\hat{C}_{[3]}+\frac{1}{2}-\hat{\alpha}\right)\left(\hat{c}_{[3]}+\frac{1}{2}-\hat{\beta}\right)\left(\hat{C}_{[3]}+\frac{1}{2}-\hat{\gamma}\right) \times \tag{21}\\
& \left(\hat{C}_{[\beta]}+3 \hat{\alpha}\right)\left(\hat{c}_{[\beta]}+3 \hat{\beta}\right)\left(\hat{c}_{[\beta]}+3 \hat{\gamma}\right) \mathrm{P}_{[3]}=0, \quad \# 8 \\
& \left(\widehat{c}_{[2,1]}+\frac{1}{2}\right)\left(\hat{c}_{[2,1]}+1\right)\left(\hat{c}_{[2,1]}+\frac{1}{2}-\hat{\alpha}\right)\left(\widehat{c}_{[2,1]}+\frac{1}{2}-\hat{\beta}\right)\left(\hat{c}_{[2,1]}+\frac{1}{2}-\hat{\gamma}\right) \times \\
& \left(\widehat{c}_{[2,1]}+\frac{1}{2}+\hat{\alpha}\right)\left(\hat{c}_{[2,1]}+\frac{1}{2}+\hat{\beta}\right)\left(\hat{c}_{[2,1]}+\frac{1}{2}+\hat{\gamma}\right) \times \\
& \left(\widehat{c}_{[2,1]}+\frac{3}{2} \hat{\alpha}\right)\left(\hat{C}_{[2,1]}+\frac{3}{2} \hat{\beta}\right)\left(\hat{c}_{[2,1]}+\frac{3}{2} \hat{\gamma}\right) \mathrm{P}_{[2,1]^{\prime}}=0, \quad \# 11 .
\end{align*}
$$

where $\hat{\alpha}=\frac{\alpha}{2 t}, \hat{\beta}=\frac{\beta}{2 t}, \hat{\gamma}=\frac{\gamma}{2 t}$. All formulas in (21) are homogeneous and symmetric under permutations (α, β, γ). Our results are in agreement with [P.Vogel (1999), A.M. Cohen and R. de Man (1996)].

The dimensions of irreps corresponding to the eigenvalues of $\widehat{C}_{[2,1]}$ [A.P. Isaev, S.O. Krivonos, A.A. Provorov, Int.J.Mod.Phys.A 38 (2023) 06n07, 2350037; e-Print: 2212.14761 [math-ph]]

$$
\begin{array}{ccc}
\operatorname{dim}_{-\frac{1}{2}} & =2 X_{2}= & 2 \times \frac{1}{2} \operatorname{dim}(g)(\operatorname{dim}(g)-3), \\
\operatorname{dim}_{-1} & =2 X_{1}= & 2 \times \operatorname{dim}(g), \\
\operatorname{dim}_{\hat{\alpha}-\frac{1}{2}} & =B= & \frac{(\hat{\alpha}-1)(\hat{\beta}-1)(\hat{\gamma}-1)(2 \hat{\alpha}+\hat{\beta})(2 \hat{\alpha}+\hat{\gamma})(2 \hat{\beta}+1)(2 \hat{\gamma}+1)(3 \hat{\beta}-1)(3 \hat{\gamma}-1)}{8 \hat{\alpha}^{2}(\hat{\alpha}-\hat{\beta})(\hat{\alpha}-\hat{\gamma})(2 \hat{\beta}-\hat{\gamma})(2 \hat{\gamma}-\hat{\beta}) \hat{\beta}^{2} \hat{\gamma}^{2}}, \\
\operatorname{dim}_{\hat{\beta}-\frac{1}{2}} & =B^{\prime}= & \frac{(\hat{\beta}-1)(\hat{\gamma}-1)(\hat{\alpha}-1)(2 \hat{\beta}+\hat{\gamma})(2 \hat{\beta}+\hat{\alpha})(2 \hat{\gamma}+1)(2 \hat{\alpha}+1)(3 \hat{\gamma}-1)(3 \hat{\alpha}-1)}{8 \hat{\beta}^{2}(\hat{\beta}-\hat{\gamma})(\hat{\beta}-\hat{\alpha})(2 \hat{\gamma}-\hat{\alpha})(2 \hat{\alpha}-\hat{\gamma}) \hat{\gamma}^{2} \hat{\alpha}^{2}}, \\
\operatorname{dim}_{\hat{\gamma}-\frac{1}{2}} & =B^{\prime \prime}= & \frac{(\hat{\gamma}-1)(\hat{\alpha}-1)(\hat{\beta}-1)(2 \hat{\gamma}+\hat{\alpha})(2 \hat{\gamma}+\hat{\beta})(2 \hat{\alpha}+1)(2 \hat{\beta}+1)(3 \hat{\alpha}-1)(3 \hat{\beta}-1)}{8 \hat{\gamma}^{2}(\hat{\gamma}-\hat{\alpha})(\hat{\gamma}-\hat{\beta})(2 \hat{\alpha}-\hat{\beta})(2 \hat{\beta}-\hat{\alpha}) \hat{\alpha}^{2} \hat{\beta}^{2}} \\
\operatorname{dim}_{-\hat{\alpha}-\frac{1}{2}} & =Y_{2}= & -\frac{(3 \hat{\alpha}-1)(\hat{\beta}-1)(\hat{\gamma}-1)(2 \hat{\beta}+1)(2 \hat{\gamma}+1)}{8 \hat{\alpha}^{2}(\hat{\alpha}-\hat{\beta})(\hat{\alpha}-\hat{\gamma}) \hat{\beta} \hat{\gamma}}, \\
\operatorname{dim}_{-\hat{\beta}-\frac{1}{2}} & =Y_{2}^{\prime}= & -\frac{(3 \hat{\beta}-1)(\hat{\gamma}-1)(\hat{\alpha}-1)(2 \hat{\gamma}+1)(2 \hat{\alpha}+1)}{8 \hat{\beta}^{2}(\hat{\beta}-\hat{\gamma})(\hat{\beta}-\hat{\alpha}) \hat{\gamma} \hat{\alpha}}, \\
\operatorname{dim}_{-\hat{\gamma}-\frac{1}{2}}=Y_{2}^{\prime \prime}= & -\frac{(3 \hat{\gamma}-1)(\hat{\alpha}-1)(\hat{\beta}-1)(2 \hat{\alpha}+1)(2 \hat{\beta}+1)}{8 \hat{\gamma}^{2}(\hat{\gamma}-\hat{\alpha})(\hat{\gamma}-\hat{\beta}) \hat{\alpha} \hat{\beta}}, \\
\operatorname{dim}_{-\frac{3}{2} \hat{\alpha}}=C= & -\frac{2}{3} \frac{(1+2 \hat{\alpha})(1+2 \hat{\beta})(1+2 \hat{\gamma})(1-\hat{\beta})(1-\hat{\gamma})(\hat{\beta}+\hat{\gamma})(2 \hat{\beta}+\hat{\gamma})(2 \hat{\gamma}+\hat{\beta})}{\hat{\alpha}^{3} \hat{\beta} \hat{\gamma}(\hat{\alpha}-2 \hat{\beta})(\hat{\alpha}-2 \hat{\gamma})(\hat{\alpha}-\hat{\beta})(\hat{\alpha}-\hat{\gamma})} \\
\operatorname{dim}_{-\frac{3}{2} \hat{\beta}}=C^{\prime}= & -\frac{2}{3} \frac{(1+2 \hat{\beta})(1+2 \hat{\gamma})(1+2 \hat{\alpha})(1-\hat{\gamma})(1-\hat{\alpha})(\hat{\gamma}+\hat{\alpha})(2 \hat{\gamma}+\hat{\alpha})(2 \hat{\alpha}+\hat{\gamma})}{\hat{\beta}^{3} \hat{\gamma} \hat{\alpha}(\hat{\beta}-2 \hat{\gamma})(\hat{\beta}-2 \hat{\alpha})(\hat{\beta}-\hat{\gamma})(\hat{\beta}-\hat{\alpha})} \\
\operatorname{dim}_{-\frac{3}{2} \hat{\gamma}}=C^{\prime \prime}= & -\frac{2}{3} \frac{(1+2 \hat{\gamma})(1+2 \hat{\gamma})(1+2 \hat{\beta})(1-\hat{\alpha})(1-\hat{\beta})(\hat{\alpha}+\hat{\beta})(2 \hat{\alpha}+\hat{\beta})(2 \hat{\beta}+\hat{\alpha})}{\hat{\gamma}^{3} \hat{\alpha} \hat{\beta}(\hat{\gamma}-2 \hat{\alpha})(\hat{\gamma}-2 \hat{\beta})(\hat{\gamma}-\hat{\alpha})(\hat{\gamma}-\hat{\beta})}
\end{array}
$$

All calculations were done with "Mathematica".

Universal formulas for 4-split Casimir operator in ad ${ }^{\otimes 4}$

The matrix of the 4 -split Casimir operator is

$$
\begin{equation*}
\left(\widehat{C}_{(4)}\right)_{b_{1} b_{2} b_{3} b_{4}}^{a_{1} a_{2} a_{3} a_{4}}=\left(\widehat{C}_{12}+\widehat{C}_{13}+\widehat{C}_{14}+\widehat{C}_{23}+\widehat{C}_{24}+\widehat{C}_{34}\right)_{b_{1} b_{2} b_{3} b_{4}}^{a_{1} a_{2} a_{3} a_{4}}, \tag{22}
\end{equation*}
$$

and acts in the space $V_{a d}^{\otimes 3}$ of the representation ad ${ }^{\otimes 3}$.

According to

$$
a d^{\otimes 4}=\left(P_{[4]}+P_{[3,1]}+P_{\left[2^{2}\right]}+P_{\left[2,1^{2}\right]}+P_{\left[1^{4}\right]}\right) a d^{\otimes 4}
$$

we have decomposition

$$
\widehat{C}_{(4)}=\widehat{C}_{[4]}+\widehat{C}_{[3,1]}+\widehat{C}_{\left[2^{2}\right]}+\widehat{C}_{\left[2,1^{2}\right]}+\widehat{C}_{\left[1^{4}\right]} .
$$

Symmetric module $\mathrm{P}_{[4]}\left(\mathrm{ad}^{\otimes 4}\right)$ includes the following representations:
[M.Avetisyan, A.P.I., S.Krivonos, R.Mkrtchyan, The uniform structure of $\mathfrak{g}^{\otimes 4}$, ArXive:2311.05358]

$$
\begin{gathered}
\mathrm{P}_{[4]}\left(\mathrm{ad}^{\otimes 4}\right)=2 \oplus J \oplus J^{\prime} \oplus J^{\prime \prime} \oplus X_{2} \oplus \mathbb{Z}_{3} \oplus 3 Y_{2} \oplus 3 Y_{2}^{\prime} \oplus 3 Y_{2}^{\prime \prime} \oplus \\
C \oplus C^{\prime} \oplus C^{\prime \prime} \oplus Y_{4} \oplus Y_{4}^{\prime} \oplus Y_{4}^{\prime \prime} \oplus D \oplus D^{\prime} \oplus D^{\prime \prime} \oplus D^{\prime \prime \prime} \oplus D^{\prime \prime \prime \prime} \oplus D^{\prime \prime \prime \prime \prime}, \quad \# 21 .
\end{gathered}
$$

The universal dimension formulae of some of these representations are:

$$
\begin{align*}
& \operatorname{dim} J=\frac{(\hat{\alpha}+\hat{\beta})(\hat{\alpha}+\hat{\gamma})(2 \hat{\alpha}+\hat{\beta}-\hat{\gamma})(2 \hat{\alpha}+2 \hat{\beta}-\hat{\gamma})(2 \hat{\alpha}-\hat{\beta}+\hat{\gamma})(\hat{\alpha}+2 \hat{\beta}+\hat{\gamma})}{4 \hat{\alpha}^{2} \hat{\beta}^{2} \hat{\gamma}^{2}(\hat{\alpha}-\hat{\beta})(\hat{\alpha}-\hat{\gamma})(\hat{\beta}-2 \hat{\gamma})(\hat{\beta}-\hat{\gamma})^{2}(2 \hat{\beta}-\hat{\gamma})(\hat{\alpha}-\hat{\beta}-\hat{\gamma})} \times \\
& (2 \hat{\alpha}+2 \hat{\beta}+\hat{\gamma})(2 \hat{\alpha}-\hat{\beta}+2 \hat{\gamma})(\hat{\alpha}+\hat{\beta}+2 \hat{\gamma})(2 \hat{\alpha}+\hat{\beta}+2 \hat{\gamma})(\hat{\alpha}+2 \hat{\beta}+2 \hat{\gamma}) \text {, } \\
& \operatorname{dim} J^{\prime}=\operatorname{dim}_{\hat{\alpha} \leftrightarrow \hat{\beta}}, \quad \operatorname{dim} J^{\prime \prime}=\operatorname{dim} J_{\hat{\alpha} \leftrightarrow \hat{\gamma}}, \\
& \operatorname{dim} \mathbb{Z}_{3}=2 \operatorname{dim} \widehat{X}_{3}=\frac{2}{9}\left(N^{2}-1\right)^{2}\left(N^{2}-9\right) \quad \text { for } s l(N), \\
& =\quad \operatorname{dim} \mathbb{X}_{3}=\frac{1}{6} \operatorname{dimg}(\operatorname{dimg}-1)(\operatorname{dimg}-8), \quad \text { for } \operatorname{so}(N) \text { and exceptional algebras, } \\
& \operatorname{dim} Y_{4}=-\frac{(\hat{\alpha}-1)(2 \hat{\alpha}-1)(7 \hat{\alpha}-1)(\hat{\beta}-1)(\hat{\alpha}+\hat{\beta}-1)(2 \hat{\alpha}+\hat{\beta}-1)(3 \hat{\alpha}+\hat{\beta}-1)(\hat{\gamma}-1)}{24 \hat{\alpha}^{4}(\hat{\alpha}-\hat{\beta})(2 \hat{\alpha}-\hat{\beta})(3 \hat{\alpha}-\hat{\beta}) \hat{\beta}(\hat{\alpha}-\hat{\gamma})(2 \hat{\alpha}-\hat{\gamma})(3 \hat{\alpha}-\hat{\gamma}) \hat{\gamma}} \times \\
& (\hat{\alpha}+\hat{\gamma}-1)(2 \hat{\alpha}+\hat{\gamma}-1)(3 \hat{\alpha}+\hat{\gamma}-1), \\
& \operatorname{dim} Y_{4}^{\prime}=\left(\operatorname{dim} Y_{4}\right)_{\hat{\alpha} \leftrightarrow \hat{\beta}}, \quad \operatorname{dim} Y_{4}^{\prime \prime}=\left(\operatorname{dim} Y_{4}\right)_{\hat{\alpha} \leftrightarrow \hat{\gamma}} \text {, } \\
& \operatorname{dimD}=\frac{(3 \hat{\alpha}-2 \hat{\beta}-2 \hat{\gamma})(\hat{\alpha}-\hat{\beta}-2 \hat{\gamma})(\hat{\beta}+\hat{\gamma})(\hat{\alpha}+\hat{\beta}+\hat{\gamma})(2 \hat{\alpha}+\hat{\beta}+\hat{\gamma})(2 \hat{\beta}+\hat{\gamma})(\hat{\alpha}+2 \hat{\beta}+\hat{\gamma})}{\hat{\alpha}^{3}(\hat{\alpha}-\hat{\beta})^{2}(3 \hat{\alpha}-\hat{\beta}) \hat{\beta}^{2}(\hat{\alpha}-2 \hat{\gamma})(\hat{\alpha}-\hat{\gamma})(2 \hat{\alpha}-\hat{\gamma})(\hat{\beta}-\hat{\gamma}) \hat{\gamma}} \times \\
& (2 \hat{\alpha}+2 \hat{\beta}+\hat{\gamma})(\hat{\alpha}+2 \hat{\gamma})(2 \hat{\alpha}-\hat{\beta}+2 \hat{\gamma})(\hat{\alpha}+\hat{\beta}+2 \hat{\gamma})(2 \hat{\alpha}+\hat{\beta}+2 \hat{\gamma})(\hat{\alpha}+2 \hat{\beta}+2 \hat{\gamma}), \tag{23}\\
& \operatorname{dim} D^{\prime}=(\operatorname{dim} D)_{\hat{\alpha} \leftrightarrow \hat{\beta}}, \operatorname{dim} D^{\prime \prime}=(\operatorname{dim} D)_{\hat{\alpha} \leftrightarrow \hat{\gamma}}, \operatorname{dim} D^{\prime \prime \prime}=(\operatorname{dim} D)_{\hat{\beta} \leftrightarrow \hat{\gamma}}, \\
& \operatorname{dim} D^{\prime \prime \prime \prime}=(\operatorname{dim} D)_{\hat{\alpha} \rightarrow \hat{\beta} \rightarrow \hat{\gamma} \rightarrow \hat{\alpha}}, \quad \operatorname{dim} D^{\prime \prime \prime \prime \prime}=(\operatorname{dim} D)_{\hat{\alpha} \rightarrow \hat{\gamma} \rightarrow \hat{\beta} \rightarrow \hat{\alpha}} \text {. } \tag{24}
\end{align*}
$$

Beyond Vogel Universality

It turns out that universality of LA is observed not only in the decomp. of $\mathrm{ad}^{\otimes r}$. 1. Consider tensor product of defining $\square=T$ and adjoint ad representations. For all simple LA (except \mathfrak{e}_{8}), we have $\square \otimes \mathrm{ad}=\square+W_{1}+W_{2}$ and the 2-split Casimir operator

$$
\left(\widehat{C}_{\square \otimes \mathrm{ad}}\right)_{i_{2} a_{2}}^{i_{1} a_{1}}=\mathrm{g}^{a b}\left(T_{a}\right)_{i_{i_{2}}}^{i_{1}}\left(X_{b}\right)_{a_{2}}^{a_{1}},
$$

satisfies universal char. identity

$$
\begin{equation*}
\left(\hat{C}_{\square \otimes \mathrm{ad}}+\frac{1}{2}\right)\left(\hat{C}_{\square \otimes \mathrm{ad}}+\frac{\hat{\alpha}}{2}\right)\left(\hat{C}_{\square \otimes \mathrm{ad}}+\frac{\hat{\beta}}{2}\right)=0, \quad \# 3 \tag{25}
\end{equation*}
$$

where $\hat{\alpha}$ and $\hat{\beta}$ are Vogel parameters (for exceptional LA $\gamma \rightarrow \beta$); see Table 2
Table 2.

	$\mathfrak{s l}(N)$	$\mathfrak{s o}(N)$	$\mathfrak{s p}(N=2 r)$	\mathfrak{g}_{2}	\mathfrak{f}_{4}	\mathfrak{e}_{6}	\mathfrak{e}_{7}
$\hat{\alpha}$	$-1 / N$	$-1 /(N-2)$	$1 /(N+2)$	$-1 / 4$	$-1 / 9$	$-1 / 12$	$-1 / 18$
$\hat{\beta}$	$1 / N$	$2 /(N-2)$	$-2 /(N+2)$	$1 / 3$	$1 / 3$	$1 / 3$	$1 / 3$
$\operatorname{dim} \square$	N	N	N	7	26	27	56

all eigenvalues in (25) were found by means of relation $\hat{c}_{(2)}^{\lambda}=\frac{1}{2}\left(c_{(2)}^{\lambda}-c_{(2)}^{\square}-c_{(2)}^{\text {ad }}\right)$ and by means of Mathematica (S.O.Krivonos).

Dimensions of the irreps \square, W_{1}, W_{2} with eigenvalues $-\frac{1}{2},-\frac{\hat{\alpha}}{2},-\frac{\hat{\beta}}{2}$

$$
\operatorname{dim}_{-\frac{1}{2}}=\operatorname{dim} \square, \quad \operatorname{dim}_{-\frac{\hat{\alpha}}{2}}=\frac{(1-\hat{\beta})(1+2 \hat{\beta})}{2 \hat{\alpha} \hat{\gamma}(\hat{\alpha}-\hat{\beta})} \operatorname{dim} \square, \quad \operatorname{dim}_{-\frac{\hat{\beta}}{2}}=\left.\operatorname{dim}_{-\frac{\hat{\alpha}}{2}}\right|_{\hat{\alpha} \leftrightarrow \hat{\beta}},
$$

are found by the standard method with the help of

$$
\operatorname{Tr} \widehat{C}_{\square \otimes \mathrm{ad}}=0, \quad \operatorname{Tr} \widehat{C}_{\square \otimes \mathrm{ad}}^{3}=-\frac{1}{4} \operatorname{Tr} \widehat{C}_{\square \otimes \mathrm{ad}}^{2}=-\frac{1}{4} c_{(2)}^{\square} \cdot \operatorname{dim} \square
$$

where $c_{(2)}^{\square}=\frac{(\hat{\alpha}-1)(\hat{\beta}-1)}{4 \hat{\gamma}}, \hat{\alpha}+\hat{\beta}+\hat{\gamma}=\frac{1}{2}$.
2. Tensor product of defining rep. $\square=T$ and rep. $Y_{2}(\alpha)$ which appears in ad ${ }^{2}$. For all simple LA (except \mathfrak{e}_{8}), we have $\square \otimes Y_{2}(\alpha)=W_{1}^{\prime}+W_{2}^{\prime}+W_{3}^{\prime}$ and

$$
\begin{equation*}
\left(\widehat{C}_{\square \otimes Y_{2}}+\frac{\hat{\beta}}{2}\right)\left(\widehat{C}_{\square \otimes Y_{2}}+\hat{\alpha}\right)\left(\widehat{C}_{\square \otimes Y_{2}}+\frac{1}{2}(1-\hat{\alpha})\right)=0, \quad \# 3 \tag{26}
\end{equation*}
$$

where $\hat{\alpha}, \hat{\beta}$ are Vogel parameters (for exceptional LA $\gamma \rightarrow \beta$) given in Table 2. For this case we also have $\operatorname{Tr} \widehat{C}_{\square \otimes Y_{2}}=0$

$$
-4 \operatorname{Tr} \widehat{C}_{\square \otimes Y_{2}}^{3}=\operatorname{Tr} \widehat{C}_{\square \otimes Y_{2}}^{2}=\frac{(\hat{\alpha}+\hat{\beta}-1)(1-\hat{\alpha})(1-\hat{\beta})(3 \hat{\alpha}-1)(2 \hat{\beta}+1)}{-8 \hat{\gamma}(\hat{\alpha}-\hat{\gamma})(\hat{\alpha}-\hat{\beta}) \hat{\alpha}} \operatorname{dim} \square
$$

and one finds universal formulas for dimensions of $W_{1,}^{\prime}, W_{2}^{\prime}, W_{3}^{\prime}$.

$$
\operatorname{dim}_{-\hat{\alpha}}:=\frac{(2 \hat{\alpha}-1-2 \hat{\beta})(\hat{\alpha}-1)(\hat{\beta}-1)(1+2 \hat{\beta})(\hat{\alpha}+\hat{\beta}-1)}{2(2 \hat{\alpha}+2 \hat{\beta}-1)(4 \hat{\alpha}-1+2 \hat{\beta})(\hat{\alpha}-\hat{\beta}) \hat{\alpha}^{2}(2 \hat{\alpha}-\hat{\beta})} \operatorname{dim} \square
$$

Discussion.

- Why does new universality arise in tensor products $\square \otimes$ ad and $\square \otimes Y_{2}(\alpha)$?
- All values of higher Casimirs $c_{(k)}^{\square}$ and $c_{(k)}^{Y_{2}(\alpha)}$ have universal representation.
- Char. identities for the split CO allow us to calculate colour factors for the amplitudes in "glue-dynamics" (including fundamental fields of \square) and write them in the universal form via Vogel parameters.
- The universal description of the subrepresentations in $\mathrm{ad}^{\otimes n}$ for $n \geq 5$ is open problem. We have problems with analytical calculations on "Mathematica".
- n-Split Casimir operators are Hamiltonians for Heisenberg-type spin-chains with interactions between all nodes (not just the closest ones).

