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Vogel parameters, Vogel map and universal Lie algebra.

1. Consider tensor products of r adjoint representations of the simple LA g and
consider Clebsch-Gordan expansion of these products:

ad® =ad®@ad® - ®ad =@\ T, , (1)

r

where T) are irreps, A — parameters which numerate irreps (e.g. highest weights)
and ny € Z~( are multiplicities.

2. The elements of the vector space of rep ad®" are rank r tensors t2122--2r
Invariant subspaces in Vﬁ’ are spaces of 2122+ with special symmetrization of
indices (a1, 2, ...a,) (according to Young diagrams - r): t1% = 1(t%2 & o),
Thus, it is possible to group the representations in the r.h.s. of (1) so that the
decomposition is converted into

ad®’ = @/\ T/\ s T/\ = ]P’/\(ad®’) s (2)

where A are Young diagrams t r and Th are (reducible) reps in the invariant
subspaces which are extracted from V5" by Young projectors s related to A.
The decomposition (2) is universal for all Lie algebras g.



3. Amazing fact: it was noticed [P.Deligne (1996), P.Vogel (1999), J.M.Landsberg
and L.Manivel (2002),..] that, for first r = 2,3, 4, subreps Tj in the r.h.s. of
ad®" = @p Tp can be decomposed further

Th =@, Tc(/i\) = ad® =, o, TC(/<\) : (3)

such that decomposition (3) is universal for all simple Lie algebras g.

Here ¢, are parameters which numerate subreps TC(:\) in TW); they are
related to values of quadratic Casimir.

4. Moreover, there are remarkable universal formulas for dim(TC(/i\)) for

all simple LAs g. Formulas for dim(Tc(/i\)) are represented as rational and
homogeneous symmetric functions of 3 real parameters (o, 3, 7)
called Vogel parameters, and all simple Lie algebras g are special points
in the space of («, 3,7).



Example: ad®? (r = 2). For all simple LAs (with rank > 1) we have
decomposition

ad®? = Ppyz(ad®?) + Pyy(ad®?) = (ad + X2) + (1 + Y(a) + Y(B) + Y(7)) .
Dim. formulas for reps in the r.h.s. are homogeneous rational functions in

(o, B,7) (symmetry in (a, 3,7) is permutation of Y (&), Y(8),Y(7)).
First we have famous P.Deligne formula:

(a—20)(B—2t)(y—2t) _(a—-1)(B

dimg = dim(ad) =

Also we have

dim(X2) = %dimg (dimg—3) =

For dim(Y(«)), ... we have similar formulas.



Since all dim(Tc, ) are homogeneous symmetric functions of Vogel parameters

(v, B,7), it is possible to fix one of them, e.g. & = —2. For this choice the sum
t := a+ B+ v coincides with dual Coxeter number hV.

Type | Lie algebra | o B ~ t=h"=a+B+y [ 4=73
An sl(n+1) -2 2 n+1 n+1 1/2
B, | so2n+1) | -2 4 2n—3 2n—1 ﬁ
Cn sp(2n) -2 1 n42 n+41 ﬁ

—
Table 1| Dn so(2n) -2 4 2n—4 2n —2 h
G 0 —2 [10/3 | 8/3 z 1/3
Fy fa -2 5 6 9 1/3
=3 ¢6 -2 6 8 12 1/3
E7 e7 -2 8 12 18 1/3
Eg g -2 12 20 30 1/3

Note that, for all exceptional Lie algebras we have 2t =3y — 4 =1/3.



Since all dim(Tc, ) are homogeneous symmetric functions of the Vogel
parameters, one can consider all simple Lie algebras as points on the 2d plane
P(a=—2) in 3d space of the Vogel parameters («, 3,7). More precisely they are
points in RP?/S; (the Vogel map).

Before we represent the Vogel map, we note that condition 2t = 3, for
exceptional LAs, defines the line (v +4) = 23 on the plane P(,—_5) € R3.
Remarkable fact: points of Lie algebras s¢(3) and so(8) are also on this line.

Type | Lie algebra | « B vy [t=h"=a+B8+7]| 5=2
Ao s6(3) 2] 2 3 3 2 =1/3
D, so(8) -2 4 4 6 1/3
G 9 —2 [ 10/3 | 8/3 4 1/3
Fa s —2| 5 6 9 1/3
Es ¢6 —2 6 8 12 1/3
E e 2] 8 | 12 18 1/3
Eg ¢g —2 12 20 30 1/3

Unified description of all simple LA by means of 3 parameters («, /3,~) leads to
the conjecture of existing the universal LA.
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Example: ad®?, (r = 2). For all simple LAs (with rank > 1) we have
decomposition

ad®? = A(ad®?) + S(ad®?) = (ad+ Xz) + (14 Y(a) + Y(8) + Y(7)) -

Dim. formulas for reps are homogeneous rational functions in («, 3,7)
(symmetry in («, 3,7) is permutation of Y(«), Y(8), Y (7)) [Vogel(1999)]:

amut) = amg = S22 [emavir)

dim(Xz) = $dimg (dimg — 3) , 20|y3), 350|s0(s) dim(1) =1,

_ (2t =3a)(B =2t)(y = 2t)t(B + t)(v + )
(o = B)(a —7)By ’

dimY(8) = dim Y(«)| Olsi(z)s § = 35,35',35"|so(s)

dimY(y) = dimY(a)|,e,, » 8la@): § = Olso(e)
In the rhs we give dims for two "exceptional” algebras sl3, 50g.

dim Y(Oé) 27‘5/(3) ~ [47 2]7 300'50(8)

a0

Remark. For the exceptional line 2t = 3, we have dim Y () = 0. It means that,
for axceptional LA, in the decomposition of ad®?, the representation Y(7) is
missing:

ad® = A(ad®?) +S(ad®) = (ad + %) + (1+ Y(2) + Y(8)) . (5)



Some achievements in the universal description of simple LA & LG.
1.) The generating function of universal eigenvalues Ca(g) of the higher Casimir

operators in the ad-representation of g [R.Mkrtchyan, A.Sergeev and A.Veselov (2012)]

k _ 1 1 dim Y(«) dim Y(3) dim Y (~)
( ) = Yo ad )z = dim(g) (1_+z+ iz T + 1+%7)+

1+3
+§ dim(g) + 1i§ — % )

2.) Formula for volumes of compact simple Lie groups G [R.Mkrtchyan, A .Veselov]

Vol(G) = (23/2r)dims = (i)

where ®(a, 8,7) = [;° dz f and

shf(a —2t) shf(B — 2t) shi(y — 2t)

F =
(2) shiashiBshiy

—dimg. (6)

Here the first term in rhs is the deformation of the universal formula (4) for

dimg = % (it is clear that F(z)|,—0 = 0).



A Lie group G is a smooth manifold. Consider the tangent vector space T.(G) to
the Lie group G at the unit element e € G.

Definition. The tangent vector space T.(G), equipped with the multiplication
[A1, A2] € Te(G) (VA1, Az € Te(G)) with axioms:

1) Anticommutativity: [A1, As] = —[As, A1,

2) Jacoby identity: [[Al, A2], A3] + [[A37 Al]7 A2] + [[AQ7 /43]7 Al] =0,

is called the Lie algebra g of the Lie group G.

[Xa, Xp] = C& Xu (7)

Cd — are structure constants. Matrices ad(X,){ = C¢, define the adjoint
representation of g. The invariant Cartan-Killing metric in T.(G) is

g = Tr(ad(X,) - ad(Xp)) = C2 C5, . (8)



For simple Lie algebras, the metric g, is invertible:
8ab gbc = 5: )

and unique up to a normalization factor: g., — Agap.
For compact Lie algebras g, one can chose the basis: g, = —92p.

The classification of simple Lie algebras (E.Cartan-H.Weyl):
4 infinite series (accidental isomorphisms are not taken into account):

1.A,: sl(n+1); 2.B,: so(2n+1); 3.C,: sp(2n); 4.D,: so(2n);

dims¢(N) = N2 — 1, dimso(N) = M52 dimsp(N) = *5H),

and 5 exceptional LA: go, fa, ¢6, ¢7, ¢g with dims: 14, 52, 78, 133, 248.



The main object is split (or polarized) Casimir operator of LA g is
C=g?X, @ X, =X"®X, € gg. (9)

The operator Cis independent of the choice of the basis X, in g and is
related to the standard quadratic Casimir operator (central element in
the enveloping algebra U/(g))

CP =g Xx,-X, € Ug). (10)
Relation is via comultiplication A(X,) = (X, @ 1 +1® X,):

A(CR)=AX?) - AX)=CO@I+I1oC@D+2C =

. (11)
C=3(A(CH)-COgI-1eC?).

Remark. The split Casimir operator C commutes with the action of g

[AA), Cl=[(A®I+1®A),C]=0, VAecg.



Split Casimir operator c appears in many applications: in the RT, in the theory of
integrable systems, as colour factors in the nonabelian gauge theories, ...

1) Higher Casimir operators C(¥) (for k > 2) are constructed via split operator

C [S.Okubo, J. Math. Phys. 18(1977) 2382; A.P.l. and V.A. Rubakov, Theory of
Groups and Symmetries, WS (2018)]. Indeed, define

() =Xoy -+ Xo @ X7 X% € U(g) @U(g) ,
then we take ad-representation in the second factor and then take trace

CR) =Ty (1 @ ad) C¥) = Xy, - - Xa, Tr(ad(X? --- X)) € U(g) .

d21 -3k

2) Kohno-Drinfeld Lie algebra and k-split Casimir operator
We define

Cj =g (I®(i—1) ® X, ® 180-7D @ X, @ 120-)) € U(g)®" .
Defining relations for Kohno-Drinfeld Lie algebra

[/C\.l'ﬁ Cix + ak] =0, [Elp Eke] =0.

~ n ~
n-split Casimir operator:  C(,) := > Cj;; — Hamiltonians for nonlocal spin chains.
i<j



Let T and T be two representations of g. One can visualize split Casimir
operator in the representation T ® T:

(T T4 C = g TEX:) TE(X) = g (T3 (Tw)d . (12)

where o, 3 =1,...,dimT and A,B =1, ...,dim?:

I
&

(Ta)3 & (To)2

Colour factor for the Feynman diagram describing scattering of two particles in
the representations T and T by gauge field A € g.
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Let Ty, and T, be two irreps of g with highest weights A\; and A, acting in
spaces V), and V,,. Consider the decomposition Ty, @ Ty, = >, nx T, where
T are irreps with HW X and n) are their multiplicity. Denote the space of T as
V). Then, from relation A(C®)) = C® @1 +1® C? +2 C we obtain

C>\1><>\2 V\ = 1( 2()‘) _ Cé)\l) o Cz()\Z))V)\

Here Ca,xa, == (T, @ Ta,)(C) and c = (M, A +26) is the value of C® on
irrep Tx; 0 =23, .. Note that T( ) is diagonalizable for simple LA in any
T, but in general its spectrum is degenerate. It implies the characteristic identity

1/ R 1 & A A
H (C>\1><)\2 - CX},,\Z) =0, C,\/} o T §(C2( ' - Cé D C£ 2)) )
hy

where H;\ means that the product runs over only those A that corresponds to
unequal eigenvalues &, ,,. Then we find projectors in T, . := Ty, @ T, onto

invariant subspaces of Cy,x, with eigenvalues ay := 6/\’}’/\2:
(Crixro — a)
_ 1XA2 M
P(ax) - H a — a, = >\1><>\2 E P (an) ~ ( >\1><>\2) :
A !

The invariant subspaces of P, - (Tth) are called Casimir subspaces.



Our method of universal description of LA is based on the extracting of invariant
subspaces in V& = ad®" by means of the char. ident. for r-split CO Cad.

The split Casimir operators and universality in ad®?:

(Gaa)7, = (ad @ad)%% (Xn @ X") = (Xn)%, (X")%, = Cob, C22 g,
acts in the space Va%2 and V,q ~ ad ~ g is the space of ad-representation. Since
ad-representation embedded in T @ (TT)~!, one can consider ad]. indices
a, b, c, ... as pairs of fundamental and antifundamental indices
a=(i,j), b=(k,?),.... In view of this, matrices (Ce,d)al‘32 can be represented as
Feynman "colour” diagrams (oriented and not oriented lines correspond to sly
and soy, sp,, cases)

an —— b2
RS S—

“f
h"

a; +— —— bl
—_—

a aiaz
(Cad)b1b2 - Chb1 Cfb2

Our aim is to find char. identity Hle(aad — a;) = 0 for split CO Ead. Then we
find k projectors in ad®? onto invariant subspaces of C,q with eigenvalues a;:

Py =1 7(2"__3‘:”') = ad® =3P - (ad®) |



Introduce symmetrized and antisymmetrized parts of Ead

- )~ N 1 - N
Co=PE G, (Co)R = 5((Ga)RE + (Ga)ii3)
where Pfd) =1(1+P) and pd) — (1 = P) are projectors on symmetric C,

and antisymmetric C_ parts of Caq in (Vag)®? ~ ad®?,

Proposition 1. For all simple LA g the SCO C. satisfy char. identity

)=0|s Z‘E:—%Z‘, , (13)

Since identity (13) is quadratic, we have two projectors P q), P(fé) on two
subrepresentations X1, X,

PU%(ad ©ad) = P(g)(ad ®@ad) + P(_3)(ad @ ad) = X, + Xo = ad X |

where dim X; = Tr(P(q)) =dimg, dimX; =Tr(P_y)) = % dimg(dimg — 3).



Proposition 2. For all LA of the classical series A, = slp1, By = 502541,
Cp = 8Pop,, Dy = 502, (except sl and sog), in ad-representation, C; has the
universal char identity

(Co+1)(Ch + 3)(Ch+ TG+ 2)PTV =], #4 (1)

where (£ + 2 4 2)=1/2 = (t=a+ f+7). The values of the Vogel
parameters «, 3, for s¢(N), so(N), sp(N) are given in Table 1.



From char. identity (14), we deduce four universal projectors PE g on the

invariant subspaces V() C ngd) (V5?) (with eigenvalues a; of C+)

ad
PEY (V) = (PE) P+ PO, PO v =

=Vien Ve H Ve Y-

|4

:)

)

PO =PH(al8, ), P, =PO(Blay), P, =PH(]a,8).

(- %) (-£)

2

The representations of g in the subspaces V(_y), Viez), V 5y V-3 were
respectively denoted by Vogel as Xo =1, Ya(«), Ya(5), ( )

P (ad®?) = Xo + Ya(a) + Ya(B) + Ya(7) |-




Thus, Prop. 1,2 justify the Vogel statement for LA of classical series.
Theorem. (P.Vogel, 1999)

ad® = PED(ad®?) + PEY(ad™) = (ad +X2) + (14 Y(a) + Y(8) + Y(7)).

Finally, we calculate (by means of trace formulas) the Vogel universal
expressions for the dim of the invariant eigenspaces V(,:

dim V(1) = Tr P =1,

(+)  _ (Ba=2t)(B—2t)(y—2t)t(B+1t)(y+1)

fm va(o) = dm Y- Bor ngr)%) _ _(3,8 2 )(aQ(ZZ;?;Bga;Z)V )(7 ) |
— _ —2t)(a—2t)(y—2t)t(a+t)(y+t

dlm Yz(ﬁ) — dlm V( ZE) — Tr P(_%) — 62(5_04)&(5_7)’7 9
(+)  _ (By—2t)(B—2t)(a—2t)t(B+t)(a+t)

dim Y2() = dim Vi- 2y = Tr P(_%) = _ 7 =B —a)a .

Remark 1. The cases of a|gebra§5[3 and sog are exceptional — their char.
identity (for symmetric part of C) has the order 3.
Remark 2. For exceptional LA cases 7. = % and we have dim Y>(vy) = 0.



Universal char identities for C for exceptional Lie algebras in ad®?,
The antisymmetric C_ and symmetric C+ parts of the split Casimir
operators in the ad-representation for all exceptional Lie algebras g obey

the universal identities

~ [~ 1
e (Do

where the universal parameter 1 is fixed as follows

. 1= R
(Co +1)(CE+ £Cs —20) pe) —o|, #3,
(15)

5
= ST dm@) (16)

and for algebras g, 4, ¢, ¢7, ¢g with dimensions 14,52 78,133,248 we

have respectively 1 = 55, 337, 95+ 153 300"

Moreover the char identities for C, for algebras s/3 and sog have the same
structure (15) with 1 = & and p = %.



From (15) we obtain the factorized form of the universal char. identity for C,

o B \pGd) _
)(C++2t)P+ =0, (17)

(Co+1)(C2+ - c+ 2mPY = (Co+ 1)(Ch + 5

where we introduced the notation for two roots of eq. Z?r + %Z; —2u=0:

1—p 8 1+ , —— dim g + 242
= _ = — = 1 2 = _— . 18
2t A + 288u dimg+2 (18)

These roots are related by 3(aw+ 8) = t, and for o = —2 this relation defines the
line of the exceptional LA on the Vogel (8, A/) plane gas we discussed above).

We note that 41 is a rational number (since 5 and 5 are rational) only for
certain finite sequence of dim g:

2t

dimg = 3,8, 14, 28, 47,52,78, 96, 119, 133, 190, 248, 287, 336, 19)
484,603,782,1081, 1680, 3479 ,

which includes the dimensions 14,52, 78,133, 248 of the exceptional Lie algebras
92, f4, €6, €7, ¢, and the dimensions 8 and 28 of s/(3) and so(8), which are
sometimes also referred to as exceptional. Dim. 190 corresponds to eyt



Remark. The sequence (19) contains dim g* = (10m — 122 4 360/m), (m € N)
referring to the adjoint representations of the so-called Eg family of algebras g*;
see the Cvitanovi¢ book. For such dimensions we have relation

' = |(m+6)/(m—6)|. Two numbers 47 and 119 from sequence (19) do not
belong to the sequence dim g*. Thus, the interpretation of these two numbers as
the dimensions of some algebras is missing. Moreover, for values dim g given in
(19), using (18), one can calculate dimensions of the corresponding
representations Y(«):

dim V(_e) = {5,27,77,300, 14233 11053, 2430, 48008 111078 7371 15504,

17
27000 841279’ 862407 107892 2205225 578151 559911 42507504 363823677}

Since dim V(_ o) should be integer, we conclude that there not exist Lie algebras

with dimensions 47,96, 119,287,336, 603, 782, 1680, 3479, for which we assume
characteristic |dent|ty (17) and the trace formulas.



Universal formulas for 3-split Casimir operator in ad®3
The matrix 6;1122223 = (6(3))2222233 of the 3-split Casimir operator is
(Ca)nih = (Ca+ Gz + C3)pi 2% (20)

and acts in the space Va@(j3 of the representation ad®3.

a 2 ﬂWfs as by
a
. z‘éb A A AW Z
ad gL “1. gi qL d,
According to
ad®3 = (P[3] + P[271] + P[13])ad®3 ,

we have decomposition

~

C3) = (P + Py + P Ga) = gy + Gy + Gy -
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A.P. Isaev, S.O. Krivonos, A.A. Provorov,

Int.J.Mod.Phys.A 38 (2023) 06n07, 2350037; e-Print: 2212.14761 [math-ph]
All calculations were done with’ I\/Iathemat|ca :

Proposition 3. For 3-split Casimirs C[13] C[3] and C[2 1] we have the
universal char. identities

G (G +2) (G +3) (Cuoy+ 3 +0) (Cuoy + 3+ 8) (Guoy+ 1 +9) =0, #6

:)
(Ca+3) (CGu+1) (Cu+i-a) (Gu+1-8) (Gu+3-19) x o
+3a) (C

Coy +1 ) (6[2 1+ 1) (Cp 0+3— Oé) (6[2,1] +3 - B) (6[2,1] +3- ﬁ) X
Coy+3+a) (Coy+3 +5) (C[z.,ll +3+ 9) x
C[2,1] + 501) C[2,1] + %B) (6[2,1] + %’AY) Py =0, #11.

where & = 5, B = 2t, 4 = 5. All formulas in (21) are homogeneous
and symmetric under permutations («, 3,). Our results are in agreement
with [P.Vogel (1999), A.M. Cohen and R. de Man (1996)].



The dimensions of irreps corresponding to the eigenvalues of 6[271]

[A.P. Isaev, S.O. Krivonos, A.A. Provorov,
Int.J.Mod.Phys.A 38 (2023) 06n07, 2350037; e-Print: 2212.14761 [math-ph]]

dm_;  =2X= 2 x 3 dim(g) (dim(g) — 3),

dim_1 =2X; = 2 x dim(g),

dim. . —pg— (a=DB-DE-1)@26+8)(26+9)(25+1)(25+1)(3B-1)35-1)
d—3 . 82 (a—p)(a—4)(2B—%)(25—B) B2 % ’

dims 1 =B = (B-DE-DE-1)2E+9)2E+8)25+1)(2a+1)(EF-1)(34a-1)
B-3 882 (B—4)(B—a)(25—a)(2a—4) 42 &2 o

dim. 1 =B/ = (G=D@-DE-1DA+)25+E)(2a+1)(25+1)(3a-1)(35-1)
¥-3 842 ((ﬁ— A))((i—ﬁ;E? &—)[(3)(}ﬁ—)(d) a2 )ﬁZ ’

. VA _ Ba=1(A-1)(3-1)(24+1)(27+1

et TR ALy

. v _ (38—1)(3—1)(&—1)(24+1)(26+1

i A Ly

. v 35—1)(&¢—1)(B—1)(24+1)(23+1

dim_;_1 =Y'=  82(3-a)3-had )

dim . —C=— _ 2 (1428)(142B) (1+25) (1- B)(1~A) (B+4) (2B+4) (25+5)
-3a 3 a3By(a—2B)(6—25)(6—B)(a—A)

dim s, — = _ 2 (142B)(1+29) (1428) (1—9) (1~ &) (+&) (25 +6) (26-+4)
-3p 3 B356(B—29)(B—28)(B-A)(B—&)

dim .. —Cr— _ 2 (1429)(1428)(1+26) (1-&) (1 B)(4+5) (26+B) (26 +4)
-39 3 Pap(y-2a)(3-28)(5—-a)(7-B) ’

All calculations were done with "Mathematica”.



Universal formulas for 4-split Casimir operator in ad®*
The matrix of the 4-split Casimir operator is
(Canmimm = (Ca+ G+ CGa+ Cs + Ga+ Ga)pi 2y, (22)

and acts in the space Va%3 of the representation ad®3.

s O +-

b
<
v
1
X

According to
ad®® = (Plg) + Py + Pl + Ppaaz + Ppasp) ad™
we have decomposition

o~

Cay = Gy + Gy + Gz + Gy + Gy -



Symmetric module P[4](ad®4) includes the following representations:
[M.Avetisyan, A.P.l., S.Krivonos, R.Mkrtchyan, The uniform structure of g®4, ArXive:2311.05358]

P[4](ad®4) =20J06J) ) X0 Z;®3Y,33Y, 83Y)®
C @ C/ @ C// @ Y4 @ Y4/ @ Y4H @ D @ D/ @ D// @ DH/ @ D//// @ D””,, #21 .

The universal dimension formulae of some of these representations are:

sy~ EEPE+ A6+ —9)(24 +28 — §)(28 — B +5)(E&+28 +4)
4a2825%(a - B)(a — w)(B 29)(B = 4)2(28 = 4)(& - B — %)
(2& + 2B +4)(2& — B+ 25)(& + B + 29)(2& + B + 29)(& + 28 + 27),
dimJ’ = dimJ, —p dimJ)"" = dimJs .4,
dim B 2 2 2,02
imZz = 2dimX3 = a(N — 1)°(N° —9) for sl(N),
= dmX3 = %dlmg(dlmg — 1)(dimg — 8), for so(N) and exceptional algebras,
di -~ (& —1a-1)Fa -HB 1)@+ -1)R&+5-1)Ba+ B -1)(3 - 1)
imYy, = — o — — X
2484 (& — B)(2a — B)(3a — B)B(a — A)(2& — A)(3& — A)4
(@+4 —1)(2a+4 - 1)(B&+4 — 1),
dimy, = (dimYa) 40y dimY," = (dim¥a)g o5 »
amp & —28—29)(a— B —29)B+A)a+B+9)a+B+4)2B+4)(a+28+4%) o
a3(a — B2(3a — B)B% (& — 29)(a& — 4)(2& — 4)(B — )4
(26 + 28+ 4)(a + 2v)(2 — B+23)(6 + B +29)(26 + B +29)(a + 2B +29), (23)
dimD’ = (dimD) 4, 5 dimD" = (dimD)4 4, dimD""" = (dimD) 5, 5+
dimD"""" = (dimD)s 5 .5 4, dimD""""" = (dimD), b (24)

a—B—a5—a’



Beyond Vogel Universality
It turns out that universality of LA is observed not only in the decomp. of ad®".
1. Consider tensor product of defining [J = T and adjoint ad representations. For
all simple LA (except ¢g), we have J® ad = O+ Wy + W, and the 2-split
Casimir operator

(Cosad)iis, = 87 (T2, (X6)%, |
satisfies universal char. identity

N

(8o + 3)(Cassa + 3)(Coisma + 5

5)=0, #3 (25)

where @ and /3 are Vogel parameters (for exceptional LA v — 3); see Table 2

Table 2.
sI(N) so(N) sp(N = 2r) g2 fa ¢6 7
& | —1/N | —1/(N—2) | 1/(N+2) | —1/4 | —1/9 | —1/12 | —1/18
B N | 2/(N—=2) | —2/(N+2) | 1/3 | 1/3 1/3 1/3
dim N N N 7 26 27 56

all eigenvalues in (25) were found by means of relation &3y = 3(c) — ¢@) — (5))

and by means of Mathematica (S.0.Krivonos).
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Dimensions of the irreps [J, Wy, W, with eigenvalues —%, —%, —%
1-8)(1+28
dim_; =dimO, dim_ézwdimﬂ7 dim 5 =dim_g o
2 2 285(6 — B) -3 2laep

are found by the standard method with the help of

~ -~ 1, -~ 1
TrCogaa =0, TrClg.q = —ZTrc%@ad = —Zc(% ~dimO

0 (@-1(B-1)
where | ) = ST a—

LG+ B+A=1

2. Tensor product of defining rep. 0 = T and rep. Ya(«) which appears in ad?.
For all simple LA (except eg), we have O ® Ya(a) = W + W, + Wj and

N

g)(fm +a)(Cogy, + %(1—@)) =0, #3 (26)

where @, 3 are Vogel parameters (for exceptional LA v — 3) given in Table 2.
For this case we also have TrChgy, =0

(@+/4-1)1-a)(1-B)Ba-1)25+1)
—8y(a —4)(a - p)a
and one finds universal formulas for dimensions of W/, Wj, Wj.

(Coey, +

dimO

—4Tr€é,®y2 = Tlr/C\é@)y2 =



N

(26 —1-2B)(a - 1)(B-1)
2026+ 28 — 1) (46 — 1 + B)(

dim_& =

Discussion.

Why does new universality arise in tensor products O®ad and O® Ya(a)?

@ All values of higher Casimirs c(k and c k) ) have universal representation.

@ Char. identities for the split CO allow us to calculate colour factors for the
amplitudes in "glue-dynamics” (including fundamental fields of (J) and write
them in the universal form via Vogel parameters.

@ The universal description of the subrepresentations in ad®” for n > 5 is open
problem. We have problems with analytical calculations on "Mathematica”.

@ n-Split Casimir operators are Hamiltonians for Heisenberg-type spin-chains
with interactions between all nodes (not just the closest ones).
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