MC generator KaTie¹ for modeling of hard processes at the NICA

A. Chernyshev^{\dagger , 2}, and V. Saleev^{\dagger , *}

[†]Samara University ^{*}Joint Institute for Nuclear Research

SPD Physics&MC Meeting N41 19 June, 2024

¹A. Van Hameren, «KaTie: For parton–level event generation with k_T-dependent initial states», Comput.Phys.Commun 224 (2018); ²Email: aachernyshoff@gmail.com

Outline

1 Introduction

2 Factorization approaches

3 KaTie

SaTie+Pythia

6 Pair charmonia studies at SPD

Onclusions

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
•	0000	000000000000000000000000000000000000000	00000	00	0000	0

Introduction

Gluon probes at NICA SPD:

- ► Different charmonia states production: $\eta_c[1S]$, $\psi[1S]$ (J/ψ) , $\psi[2S]$.
 - Description of hadronization of cc pair is based on phenomenological models: CSM, NRQCD, (I)CEM;
 - Event generators:
 - ▶ Pythia 6.,8. ←-- parton showers;
 - MadGraph5_aMC@NLO_[Alwall et.al. '14] -- parton level + matching with parton showers;
 - ▶ ...

• Open charm production: D^0/\bar{D}^0 .

- ▶ Usually description of hadronization of $c \rightarrow D^0/\bar{D}^0$ is based on *fragmentation mechanism*;
- Calculations can be included in any pQCD event generator.

Prompt photons:

- Fully perturbative process at parton level;
- Event generators:

 - Sherpa[Gleisberg et.al. '09] +-- parton showers;

 - ► ...
- All of this generators use the *collinear factorization approximation* $\mu_F \sim p_T \gg \Lambda$.
- At the NICA kinematical range we plan to study TMD PDF's.

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	●000	000000000000000000000000000000000000000	00000	00	0000	0

Collinear parton model³

Initial state momenta:

$$q_{1,2} = \left(q_{1,2}^{\pm}/2\right) n_{\mp} + q_{T_{1,2}} \Longrightarrow q_{1,2}^2 = -\mathbf{q}_{T_{1,2}}^2, \quad q_{1,2}^{\pm} \gg q_{1,2}^{\mp}$$

Collinear factorization: $|\mathbf{q}_{T_i}| \ll \mu_F$:

$$d\sigma_{\text{CPM}} = \left[f(x_1, \mu_F^2) \times f(x_2, \mu_F^2) \right] \otimes d\hat{\sigma}_{\text{CPM}}(x_i, \mu_F, \mu_R) + \mathcal{O}\left(\frac{\Lambda^{\#}}{\mu_F^{\#}}\right),$$

where $f(x_i, \mu_F^2)$ is integrated over $|\mathbf{q}_{T_i}|$ PDF's satisfying **DGLAP** eq.

Advantages:

- ► Good for description of single-scale processes like Drell-Yan;
- ▶ There are calculation in LO, NLO, NNLO, ...

Disadvantages:

• Only applicable in high $|\mathbf{p}_T| \gg \mu_F$. In case of $\psi[1S]$ production:

$$|\mathbf{p}_T| \gg \mu_F \sim M_{T_{\Psi}} \sim M_{\Psi} \sim 3 \text{ GeV}.$$

³We use Sudakov decomposition: $p = (p^+n_- + p^-n_+)/2 + p_T$, where light cone variables $n^{\pm} = (1, 0, \pm 1)$, so that $p^{\pm} = (p, n^{\pm})$.

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

TMD parton model

Initial state momenta:

$$q_{1,2} = \left(q_{1,2}^{\pm}/2\right) n_{\mp} + q_{T_{1,2}} \Longrightarrow q_{1,2}^2 = -\mathbf{q}_{T_{1,2}}^2$$

Transverse Momentum Dependent (TMD):_[Collins '11] $|\mathbf{q}_{T_i}| \ll \mu_F$

$$d\sigma_{\text{TMD}} = \left[F(x_1, \mathbf{q}_{T_1}, \mu_F^2, \mu_Y^2) \times F(x_2, \mathbf{q}_{T_2}, \mu_F^2, \mu_Y^2)\right] \delta^{(2)} \left(\mathbf{q}_{T_1} + \mathbf{q}_{T_2} - \mathbf{p}_T\right)$$
$$\otimes d\hat{\sigma}_{\text{CPM}} + \mathcal{O}\left(\Lambda^{\#}/\mu_F^{\#}, \mathbf{p}_T^2/\mu_F^2\right),$$

where $F(x_i, \mathbf{q}_{T_i}, \mu^2, \mu_Y^2)$ is *TMD PDF's* satisfying *Collins–Soper eq.* Advantages:

► TMD PDF's include effects enhanced by

$$\ln \frac{\mu_F^2}{\Lambda^2}, \quad \ln \frac{\mu_F^2}{\mathbf{p}_T^2}, \quad \ln^2 \frac{\mu_F^2}{\mathbf{p}_T^2};$$

• Describe data at low $|\mathbf{p}_T| \ll \mu_F$;

Disadvantages:

• Only applicable in low $|\mathbf{p}_T| \ll \mu_F$. In case of $\psi[1S]$ production:

$$|\mathbf{p}_T| \ll \mu_F \sim M_{T\psi} \sim M_{\psi} \sim 3 \text{ GeV}$$

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

High energy factorization (\neq **TMD**)

Initial state momenta:

$$q_{1,2} = \left(q_{1,2}^{\pm}/2\right) n_{\mp} + q_{T_{1,2}} \Longrightarrow q_{1,2}^2 = -\mathbf{q}_{T_{1,2}}^2, \quad q_{1,2}^{\pm} \gg q_{1,2}^{\mp}.$$

High energy factorization a.k.a k_T -factorization: [Gribov et.al.'83; Catani et.al.'91] $|\mathbf{q}_{T_i}| \sim \mu_F$ and $Y_i \gg 1$

$$d\sigma_{\text{HEF}} = \left[\Phi(x_1, \mathbf{q}_{T_1}, \mu^2) \times \Phi(x_2, \mathbf{q}_{T_2}, \mu^2)\right] \otimes d\hat{\sigma}_{\text{HEF}} + \mathscr{O}\left(\frac{\Lambda^{\#}}{\mu_F^{\#}}, \frac{\mu_F^2}{s}\right),$$

where $\Phi(x_i, \mathbf{q}_{T_i}, \mu^2)$ is unintegrated PDF's (uPDF's). Advantages:

- Reggeized amplitudes are gauge-invariant;
- uPDF's include DGLAP evolution and small x effects:

$$\ln \frac{\mu_F^2}{\Lambda^2}, \quad \ln^2 \frac{\mathbf{q}_T^2}{\mu_F^2}, \quad \ln \frac{1}{x}$$

• Describe region between TMD $|\mathbf{p}_T| \ll \mu_F$ and CPM $|\mathbf{p}_T| \gg \mu_F$; Disadvantage (at NICA energies):

• The main effects relate to the «small» x, at NICA: $x \sim 10^{-2} - 1$.

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

uPDF's

The uPDF's must include DGLAP evolution and small x effects:

PRA = Reggeized amplitudes + mKMRW uPDF's

We use uPDF's calculated in modified Kimber-Martin-Ryskin-Watt

model [Nefedov, Saleev '20; KMR '01; MRW '03]:

- Normalization condition holds exactly:

$$\int^{\mu^2} d\mathbf{q}_T^2 \, \Phi(x, \mathbf{q}_T, \mu^2) = x f(x, \mu^2), \quad \forall x, |\mathbf{q}_T|$$

In the region $|\mathbf{p}_T| \ll \mu_F$:

$$\Phi(x,\mathbf{q}_T,\mu^2) \simeq F(x,\mathbf{q}_T,\mu_F^2,\mu_Y^2=\mu_F^2) \to \mathbf{PRA} \simeq \mathbf{TMD} + \mathscr{O}\left(\frac{\mathbf{p}_T^2}{\mu_F^2}\right)$$

- A large number (~ 30) of different uPDF's are collected in TMDlib 2.x[Jung et.al. '21]:

 - ccfm-JH-2013-set2 <-- Monte-Carlo CCFM equation solution.

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	•0000000000000	00000	00	0000	0

KaTie

The main aspects of KaTie:

(see manual for details)

- Parton level event generator;
- Fully numerical method for calculating gauge invariant amplitudes with off-shell initial states based on spinor amplitudes formalism and recurrence relations of the Britto-Cachazo-Feng-Witten (BCFW) type;
- Order of diagrams up to:

$$\mathcal{O}(e^n g^m), \qquad n+m \leq 4;$$

- ► Tree-level CPM calculations with collinear PDF sets from LHAPDF;
- ► Tree-level HEF calculations with uPDF's from:
 - TMDlib and from user grid files;
 - user grids with format:

 $\ln x \quad \ln |\mathbf{q}_T|^2 \quad x \Phi(x, |\mathbf{q}_T|) \qquad \text{or} \qquad \ln x \quad \ln |\mathbf{q}_T|^2 \quad \ln \mu^2 \quad x \Phi(x, |\mathbf{q}_T|, \mu);$

At $|\mathbf{p}_T| \ll \mu_F$ KaTie may be used for TMD calculations with TMD PDF's;

▶ Output files in custom format and in the LHEF --→ connection with multipurpose generatros like Pythia;

and many more. . .

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

KaTie installation

Download repositories from https://bitbucket.org/hameren/katie/downloads https://bitbucket.org/hameren/avhlib/downloads and unzip files. Edit settings.py script inside the KaTie directory: # Path to the AVHLIB directory AVHLIBpath = '/path/to/AVHLIB' # Path to the directory where libLHAPDF.so is LHAPDFpath = '/path/to/libLHAPDF.so' # Fortran compiler with flags FC = 'gfortran -fcheck=bounds'

If you want to use TMDlib:

Path to the directory where TMDlib-config is (for tmdlib-2.0.x or # older you can still put the path where libTMDlib.so is) TMDLIBpath = '/path/to/libTMDlib.so'

Then, inside the KaTie-directory execute: \$./config.py lib

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

KaTie installation

Download repositories from https://bitbucket.org/hameren/katie/downloads https://bitbucket.org/hameren/avhlib/downloads and unzip files. Edit settings.py script inside the KaTie directory: # Path to the AVHLIB directory AVHLIBpath = '/path/to/AVHLIB' # Path to the directory where libLHAPDF.so is LHAPDFpath = '/path/to/libLHAPDF.so' # Fortran compiler with flags FC = 'gfortran -fcheck=bounds'

If you want to use TMDlib:

Path to the directory where TMDlib-config is (for tmdlib-2.0.x or # older you can still put the path where libTMDlib.so is) TMDLIBpath = '/path/to/libTMDlib.so'

Then, inside the KaTie-directory execute: \$./config.py lib

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

KaTie installation

Download repositories from https://bitbucket.org/hameren/katie/downloads https://bitbucket.org/hameren/avhlib/downloads and unzip files. Edit settings.py script inside the KaTie directory: # Path to the AVHLIB directory AVHLIBpath = '/path/to/AVHLIB' # Path to the directory where libLHAPDF.so is LHAPDFpath = '/path/to/libLHAPDF.so' # Fortran compiler with flags FC = 'gfortran -fcheck=bounds'

If you want to use TMDlib:

Path to the directory where TMDlib-config is (for tmdlib-2.0.x or # older you can still put the path where libTMDlib.so is) TMDLIBpath = '/path/to/libTMDlib.so'

Then, inside the KaTie-directory execute:

\$./config.py lib

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

KaTie working principle

```
run.sh
input
                   directory
                   proc001
                   (for each process)
                   proc002
                   create_eventfile.f90
                   create_eventfile.sh
                   extra cuts.h90
                   extra_weights.h90
                   input
                                                \operatorname{optimize.sh}
                   optimize.sh
                                                               main.out
                                                                            \rightarrow
                                                                                  raw123.dat
                   recompile.sh
                                                                                  (Custom format)
                                                                                  \downarrow run.sh
```

```
eventfile.dat
(LHEF)
```

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

Input file: processes

```
The user must explicitly list all desired parton–level The list of all possible particles are as follows:
processes:
```

```
Nfinst = 2
process = g g -> c c~ factor = 1
process = q q~ -> c c~ factor = 1
N flavors = 4
partlumi = combined
and set the number of non-QCD vertices:
pNonQCD = 0 0 0
        EW Hg HA
```

```
It is relevant, f.e., for process q\bar{q} \rightarrow \mu \bar{\mu} i j.
```

ve	ve~	e-	e+	u	u~	d
vmu	vmu~	mu-	mu+	С	C~	S
vtau	vtau~	tau-	tau+	t	t~	b
g	Н	Α	Z	W-	₩+	

PDF sums:

q q[~]: $(u_1\bar{u}_2 + d_1\bar{d}_2 + ...) + (1\leftrightarrow 2)$

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

Input file: processes

```
The user must explicitly list all desired parton–level The list of all possible particles are as follows:
processes:
```

```
Nfinst = 2
process = g g -> c c~ factor = 1
process = q q~ -> c c~ factor = 1
N flavors = 4
partlumi = combined
and set the number of non-QCD vertices:
pNonQCD = 0 0 0
         EW Hg HA
It is relevant, f.e., for process q\bar{q} \rightarrow \mu \bar{\mu} i j.
```

Interactions can be switched on/off with

switch = withQCD yes switch = withQED no switch = withWeak no switch = withHiggs no switch = with HG noswitch = withHA no

ve	ve~	e-	e+	u	u~	d
vmu	vmu~	mu-	mu+	С	C~	S
vtau	vtau~	tau-	tau+	t	t~	b
g	Н	Α	Z	W-	W+	

PDF sums:

q q["]: $(u_1\bar{u}_2 + d_1\bar{d}_2 + ...) + (1\leftrightarrow 2)$

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

The user must set the PDF set from LHAPDF (always necessary for α_S calculation) lhaSet = MSTW2008lo90cl

offshell = 1 1	1 1:			
	1 0:		01:	

The user can use uPDF/TMD PDF set from TMDlib by specifying the set id TMDlibSet = 102100 From TMDlib v.2.0.0

```
Alternatively, the user can provide TMD PDF's as grids directly:
tmdTableDir = /path/to/PDFs/
```

Actual grid file must be indicated for each parton separately: tmdpf = g gluon.dat tmdpf = u u.dat tmdpf = u~ uBar.dat :

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

The user must set the PDF set from LHAPDF (always necessary for α_S calculation) lhaSet = MSTW2008lo90cl

and indicate the type of initi	al states (on/	/off m	ass-shell)				
offshell = 1 1	1 1:	g* g	g* ->				
	1 0:	g* g	g ->	or	0 1:	g	g* ->
	0 0:	g g	g ->				

The user can use uPDF/TMD PDF set from TMDlib by specifying the set id TMDlibSet = 102100 From TMDlib v.2.0.0

```
Alternatively, the user can provide TMD PDF's as grids directly:
tmdTableDir = /path/to/PDFs/
```

Actual grid file must be indicated for each parton separately: tmdpf = g gluon.dat tmdpf = u u.dat tmdpf = u~ uBar.dat :

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

The user must set the PDF set from LHAPDF (always necessary for α_S calculation) lhaSet = MSTW2008lo90cl

and indicate the type of initia	al states (on	/off m	ass-shell)				
offshell = 1 1	1 1:	g* g	g* ->				
	1 0:	g* g	g ->	or	0 1:	g	g* ->
	0 0:	gg	g ->				

The user can use uPDF/TMD PDF set from TMDlib by specifying the set id TMDlibSet = 102100 From TMDlib v.2.0.0

```
Alternatively, the user can provide TMD PDF's as grids directly:
tmdTableDir = /path/to/PDFs/
```

Actual grid file must be indicated for each parton separately: tmdpf = g gluon.dat tmdpf = u u.dat tmdpf = u~ uBar.dat :

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

The user must set the PDF set from LHAPDF (always necessary for α_S calculation) lhaSet = MSTW2008lo90cl

and indicate the type of init	tial states (on	/off n	nas	s–shell)				
offshell = 1 1	1 1:	g*	g*	->				
	1 0:	g*	g	->	or	0 1:	g	g* ->
	0 0:	g	g	->				

The user can use uPDF/TMD PDF set from TMDlib by specifying the set id TMDlibSet = 102100 From TMDlib v.2.0.0

```
Alternatively, the user can provide TMD PDF's as grids directly:
tmdTableDir = /path/to/PDFs/
```

Actual grid file must be indicated for each parton separately: tmdpf = g gluon.dat tmdpf = u u.dat tmdpf = u~uBar.dat :

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

Input file: more than one TMD set

For the applications of nuclear scattering studies, the user can set two different TMD sets viaTMDlibSet A = 400002The symbol A refers to the positive-rapidityTMDlibSet B = 102200initial states, and the symbol B to the

```
negative one, e.g. B + A \rightarrow 1234
```

```
If the user provides their own grids
tmdTableDir = /path/to/PDFsA/
tmdpf A = g gluon.dat
tmdpf A = u uQuark.dat
tmdpf A = u~ uBar.dat
...
tmdTableDir = /path/to/PDFsB/
tmdpf B = g gluon.dat
tmdpf B = u uQuark.dat
tmdpf B = u~ uBar.dat
```

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

Input file: more than one TMD set

For the applications of nuclear scattering studies, the user can set two different TMD sets via TMDlibSet A = 400002The symbol A refers to the positive-rapidity TMDlibSet B = 102200initial states, and the symbol B to the

negative one, e.g. $B + A \rightarrow 1 2 3 4$

```
If the user provides their own grids
```

```
tmdTableDir = /path/to/PDFsA/
tmdpf A = g gluon.dat
tmdpf A = u uQuark.dat
tmdpf A = u \sim uBar.dat
tmdTableDir = /path/to/PDFsB/
tmdpf B = g gluon.dat
tmdpf B = u uOuark.dat
tmdpf B = u \sim uBar.dat
```

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	00000000000000	00000	00	0000	0

Input file: kinematics

The center-of-mass energy \sqrt{s} in GeV: Ecm = 27.0 The user can also set beam energies separetly with EbeamA and EbeamB

```
Typical value of softest scale in GeV
Esoft = 3
```

Number of nonzero-weight phase space points to be spent on optimization Noptim = 100,000

```
Kinematical cuts can be set with
cut = {pT|1|} > 3.0
cut = {rapidity|1|} < 3.0
cut = {rapidity|1|} > -3.0
cut = {rapidity|1|} > -3.0
cut = {pT|2|} > 3.0
cut = {rapidity|2|} < 3.0
cut = {rapidity|2|} > -3.0
cut = {deltaB|1.2|} > 0.4
```

Cone distance $\Delta R = \sqrt{\Delta \phi^2 + \Delta y^2}$

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	00000000000000	00000	00	0000	0

Input file: kinematics

```
The center-of-mass energy \sqrt{s} in GeV:
Ecm = 27.0 The user can also set beam energies separetly with EbeamA and EbeamB
```

```
Typical value of softest scale in GeV
Esoft = 3
```

Number of nonzero-weight phase space points to be spent on optimization Noptim = 100,000

```
Kinematical cuts can be set with

cut = {pT|1} > 3.0

cut = {rapidity|1|} < 3.0

cut = {rapidity|1|} > -3.0

cut = {pT|2|} > 3.0

cut = {rapidity|2|} < 3.0

cut = {rapidity|2|} < -3.0

cut = {deltaR|1,2|} > 0.4 Cone distance \Delta R = \sqrt{\Delta \phi^2 + \Delta y^2}
```

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	00000000000000	00000	00	0000	0

Other possible variables:

{pseudoRap i }	Pseudo rapidity
{ET i }	Transverse energy
{theta i }	Polar angle
{deltaPhi i,j }	Angle between i and j

```
Some variables can take arguments that consists of sums:
{mass|i+j+...|}, {pT|i+j+...|}, {rapidity|i+j+...|}, .
```

The user can set complicated cuts: $cut = \{pT|i|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the pT-ordered list of final-states j,k,... $cut = \{pT|i|rapidity|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the rapidity-ordered list of final-states j,k,...

For even more complicated cuts, the user can provide blocks of FORTRAN pseudo source code like cut source = if (ABS({rapidity|1|}).gt.3.D0) REJECT cut source = if ({rapidity|1|}.gt.{rapidity|2|}) then cut source = if ({pT|2|1,2,3|}.lt.30.D0) REJECT cut source = endif

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	00000000000000	00000	00	0000	0

Other possible variables:

{pseudoRap i }	Pseudo rapidity
{ET i }	Transverse energy
{theta i }	Polar angle
{deltaPhi i,j }	Angle between i and j

Some variables can take arguments that consists of sums: {mass|i+j+...|}, {pT|i+j+...|}, {rapidity|i+j+...|}, ...

The user can set complicated cuts: $cut = \{pT|i|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the pT-ordered list of final-states j,k,... $cut = \{pT|i|rapidity|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the rapidity-ordered list of final-states i,k,...

For even more complicated cuts, the user can provide blocks of FORTRAN pseudo source code like cut source = if (ABS({rapidity|1|}).gt.3.D0) REJECT cut source = if ({rapidity|1|}.gt.{rapidity|2|}) then cut source = if ({pT|2|1,2,3|}.lt.30.D0) REJECT cut source = endif

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	00000000000000	00000	00	0000	0

Other possible variables:

{pseudoRap i }	Pseudo rapidity
{ET i }	Transverse energy
{theta i }	Polar angle
{deltaPhi i,j }	Angle between i and j

Some variables can take arguments that consists of sums: {mass|i+j+...|}, {pT|i+j+...|}, {rapidity|i+j+...|}, ...

The user can set complicated cuts: $cut = \{pT|i|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the pT-ordered list of final-states j,k,... $cut = \{pT|i|rapidity|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the rapidity-ordered list of final-states j,k,...

For even more complicated cuts, the user can provide blocks of FORTRAN pseudo source code like cut source = if (ABS({rapidity|1|}).gt.3.D0) REJECT cut source = if ({rapidity|1|}.gt.{rapidity|2|}) then cut source = if ({pT|2|1,2,3|}.lt.30.D0) REJECT cut source = endif

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	00000000000000	00000	00	0000	0

Other possible variables:

{pseudoRap i }	Pseudo rapidity
{ET i }	Transverse energy
{theta i }	Polar angle
{deltaPhi i,j }	Angle between i and j

Some variables can take arguments that consists of sums: {mass|i+j+...|}, {pT|i+j+...|}, {rapidity|i+j+...|}, ...

The user can set complicated cuts: $cut = \{pT|i|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the pT-ordered list of final-states j,k,... $cut = \{pT|i|rapidity|j,k,...\} > 10.0$ set the minimum pT of i-th final state in the rapidity-ordered list of final-states j,k,...

For even more complicated cuts, the user can provide blocks of FORTRAN pseudo source code like cut source = if (ABS({rapidity|1|}.gt.3.D0) REJECT cut source = if ({rapidity|1|}.gt.{rapidity|2|}) then cut source = if ({pT|2|1,2,3|}.lt.30.D0) REJECT cut source = endif

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	0000000000000000	00000	00	0000	0

Input file: scales

By default, it is assumed that the factorization scale and the renormalization scale are equal $scale = ({pT|1})$

If the user wants set a different renormalization scale, it can be set with renormalization scale = ({ET|1|})

The user can also set different scales for different PDF's with scaleA = {pT|1|} scaleB = {ET|1|}

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000	00000	00	0000	0

Input file: scales

By default, it is assumed that the factorization scale and the renormalization scale are equal $scale = ({pT|1})$

If the user wants set a different renormalization scale, it can be set with renormalization scale = $({ET|1})$

The user can also set different scales for different PDF's with scaleA = {pT|1|} scaleB = {ET|1|}

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000	00000	00	0000	0

Input file: scales

By default, it is assumed that the factorization scale and the renormalization scale are equal $scale = ({pT|1})$

If the user wants set a different renormalization scale, it can be set with renormalization scale = ({ET|1}})

The user can also set different scales for different PDF's with

scaleA = {pT|1|}
scaleB = {ET|1|}

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

Input file: model parameters

Masses and widths:

- mass = Z 91.1882 2.4952 mass = W 80.419 2.21 mass = H 125.0 0.00429 mass = c 1.31 mass = b 4.75 mass = t 173.5
- coupling = alphaEW 0.00794
 coupling = Gfermi 1.16639D-5

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

KaTie usage

After writing the input file, you need to create a calculation directory with:

\$./run.sh prepare input directory

Complete Toolkit of /.run.sh script:

- \$ run.sh lib
- \$ run.sh prepare <filename> <dirname>
- \$ run.sh compile <sourcefile>
- \$ run.sh compile,run <sourcefile>
- \$ run.sh compile,run <sourcefile> <datafile>
- \$ run.sh merge raw1.dat raw2.dat raw3.dat
- \$ run.sh merge raw*
- \$ run.sh lhef raw1.dat raw2.dat raw3.dat
- \$ run.sh lhef raw*
- \$ run.sh help compile
- \$ run.sh katamp

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000	00000	00	0000	0

KaTie usage

At this stage the user can edit

extra_cuts.h90 and extra_weights.h90 and use recompile.sh to confirm changes.

Then phase space can be optimized

\$./optimize.sh

Complete Toolkit of ./optimize.sh script: To run 4 optimization processes at a time: \$./optimize.sh Ncpu=4 Exactly the same is achieved with Nparallel=4 To run optimization process 3: \$./optimize.sh proc=3 To run optimization process 3 and 12: \$./optimize.sh proc=3,12 You should now understand the following: \$./optimize.sh proc=3,12,4,11,2 Ncpu=4 You can monitor the progress with \$ tail -f proc*/output You can kill all processes with \$ pkill -f main

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000	00000	00	0000	0

KaTie usage

After optimization stage, you can run your calculations:

\$./main.out

```
Complete Toolkit of ./main.out script:
Execute as, for example:
$ ./main.out seed=12345
or
$ nohup ./main.out seed=12345 > output12345 &
or
$ nohup ./main.out seed=12345 dir=R001/ > R001/output &
Upon completion of calculations, raw file with the following structure will be created:
# Information from input
EVENT WEIGHT: ...
1
                    E**2-px**2-py**2-pz**2
                                                  color
E
                                                           anti-color
                                                                          helicity
    рх
          py
               pz
                                                   One line for each particle. Initial states have E < 0.
                  parton luminosity (x_1 f_1 x_2 f_2)
matrix element
                                                   \alpha_{S}
                                                       \mu_R
pdfB
             kTB
       xВ
                    muB
pdfA
             kTA
       хA
                    miiA
```

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	●0000	00	0000	0

i. Fragmentation production

Fragmentation approach $i \rightarrow A$:

$$\frac{d\sigma_A}{dp_T \, dy} = \sum_i \mathcal{D}_{i/A}(z) \otimes \frac{d\sigma_i}{dq_T \, d\eta}$$

▶ $D^{0/+}$ mesons production: $gg, q\bar{q} \rightarrow c (\rightarrow D) + \bar{c}$. Non-perturbative fragmentation function (FF):

$$\mathcal{D}_{c/D}(z) = \mathcal{N} \frac{z(1-z)^2}{[(1-z)^2 + \varepsilon z]^2}, \quad \varepsilon = 0.06,$$

where $z = (p^0 + |\mathbf{p}|)/(q^0 + |\mathbf{q}|)$.

► γ^{frg} production (at LO): $gg, q\bar{q} \rightarrow q' (\rightarrow \gamma^{\text{frg}}) + \bar{q}'$. Perturbatively calculated FF:

$$\mathcal{D}_{q/\gamma}(z,\mu_F) = \mathcal{D}_{\bar{q}/\gamma}(z) = \frac{\alpha}{2\pi} \frac{1+(1-z)^2}{z} \ln \frac{\mu_F^2}{\Lambda^2},$$

where $z = p^0/q^0$.

Predictions for D⁰ production at the SPD NICA

$$\frac{d\sigma_D}{dp_T^D} = \mathcal{D}(z) \otimes \frac{d\sigma_{c\bar{c}}}{dp_T^c}$$

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

ii. Charmonia production

Improved color evaporation model (ICEM)[Ma, Vogt '16]:

$$\frac{d\sigma_{\psi}}{d^3p} = \mathcal{F}^{\psi} \times \int_{M_{\psi}}^{2M_D} dM \, d^3\mathbf{p}' \, \delta^{(3)} \left(\mathbf{p} - \frac{M_{\psi}}{M}\mathbf{p}'\right) \, \frac{d\sigma_{c\bar{c}}}{dM \, d^3p'} + \mathcal{O}\left(\frac{\lambda^2}{m_q^2}\right)$$

Each \mathcal{F}^{Ψ} factor for each $\psi = \eta_c[1S], \psi[1S], \psi[2S], \dots$

At NICA energies we obtained [A.C., Saleev '22]:

$$R = \frac{\sigma_{q\bar{q} \to \psi[1S]X}}{\sigma_{gg \to \psi[1S]X} + \sigma_{q\bar{q} \to \psi[1S]X}} \simeq 30\%$$

KaTie scheme:

cut source = if ((3.10D0/{mass|1+2|}*{pT|1+2|}).gt.4.D0) REJECT

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	0000	00	0000	0

Predictions for $\psi[1S]$ **production at the SPD NICA**

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

NLO* CPM calculations with KaTie

LO CPM 2 \rightarrow 2: processes of order $\mathscr{O}(\alpha_s^2)$ are finite:

 $\begin{array}{l} g+g\rightarrow c+\bar{c},\\ q+\bar{q}\rightarrow c+\bar{c}. \end{array}$

NLO^{*} CPM 2 \rightarrow 3: first α_S real correction of order $\mathscr{O}(\alpha_S^3)$:

$$\begin{array}{l} g+g \to c+\bar{c}+g \ (k'),\\ q+\bar{q} \to c+\bar{c}+g \ (k'),\\ g+q \to c+\bar{c}+q \ (k') \end{array} \right\} \quad \text{infrared diverge } |\mathbf{k}_T'| \to 0$$

Phenomenological cutoff at the lower limit and suppression function:

$$\sigma_{ij \to c\bar{c}g}(\lambda) \sim \int_0^\infty d|\mathbf{k}_T'| F_{\text{sup}}(|\mathbf{k}_T'|;\lambda) \times \dots, \qquad F_{\text{sup}}(|\mathbf{k}_T'|;\lambda) = \frac{|\mathbf{k}_T'|^4}{(|\mathbf{k}_T'|^2 + \lambda^2)^2}$$

- ► Suitable for describing data on charmonia production_[Cheung, Vogt '21];
- ► Also can be applied to D mesons production[Maciula, Szczurek '19].

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

DLSA

Double Longitudinal–Spin Asymmetry:

$$A_{LL} = rac{d\sigma^{++} - d\sigma^{+-}}{d\sigma^{++} + d\sigma^{+-}} = rac{d\Delta\sigma}{d\sigma},$$

 $d\Delta\sigma$ -polarized cross section:

$$d\Delta\sigma \simeq \sum_{i,j} \left[\Delta f_i(x_1, \mu_F^2) \times \Delta f_j(x_2, \mu_F^2) \right] \otimes d\Delta\sigma_{ij}(x_1, x_2, \mu_F, \mu_R)$$

 $d\sigma$ -unpolarized cross section.

For each event we know:

E px py pz E**2-px**2-py**2-pz**2 color anti-color helicity

 \implies we can sample events with a fixed helicity value.

LHAPDF polarized PDF sets:

- ▶ NNPDFpol10_100;
- ▶ NNPDFpol11_100.

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	•0	0000	0

KaTie with parton showers from Pythia 8

In collaboration with L. Alimov.

Pythia settings:

PartonLevel:ISR = on
PartonLevel:FSR = on
HadronLevel:Hadronize = on
HadronLevel:Decay = on

BeamRemnants:primordialKT = off

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	0•	0000	0

KaTie with parton showers from Pythia 8

Pythia settings:

PartonLevel:ISR = on
PartonLevel:FSR = on
HadronLevel:Hadronize = on
HadronLevel:Decay = on

BeamRemnants:primordialKT = off

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	●000	0

Pair charmonia studies at SPD

ICEM also can be applied to pair charmonia production[A.C., Saleev '22-24]:

Single parton scattering contribution (SPS):

$$\frac{d\hat{\sigma}_{\psi\psi'}^{\text{SPS}}(x_1, x_2)}{d^3 p_1 d^3 p_2} \simeq \mathcal{F}^{\psi\psi'} \times \int_{M_{\psi}}^{2M_H} dM_1 \int_{M_{\psi'}}^{2M_{H'}} dM_2 \ \frac{d\hat{\sigma}_{c\bar{c}c\bar{c}}}^{\text{SPS}}(x_1, x_2)}{dM_1 d^3 p_1' dM_2 d^3 p_2'}$$

Following Pauli principle: $\mathcal{F}^{\psi\psi'} = \mathcal{F}^{\psi} \times \mathcal{F}^{\psi'}$ only in case $\psi \neq \psi'$.

• Double parton scattering contribution (DPS):

$$\frac{d\hat{\sigma}_{\psi\psi'}^{\text{DPS}}(x_1, x_2, x_1', x_2')}{d^3 p_1 d^3 p_2} \simeq \frac{\mathcal{F}^{\Psi} \times \mathcal{F}^{\Psi'}}{(1 + \delta_{\psi\psi'}) \,\sigma_{\text{eff}}} \times \int_{M_{\psi}}^{2M_H} dM_1 \, \frac{d\hat{\sigma}_{c\bar{c}}^{\text{SPS}}(x_1, x_1')}{dM_1 \, d^3 p_1'} \, \int_{M_{\psi'}}^{2M_{H'}} dM_2 \, \frac{d\hat{\sigma}_{c\bar{c}}^{\text{SPS}}(x_2, x_2')}{dM_2 \, d^3 p_2'}$$

We can perform DPS calculations using KaTie.

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

Results: $\psi[1S] + \psi[1S]$

LO PRA + NRQCD \lor NLO* CPM + CSM \lor LO PRA + ICEM

Figure 1: The left plot is from [Aaij et.al. /23].

Predictions in LO PRA+NRQCD and CSM+NLO* CPM are performed only taking into account the SPS contribution!
 Introduction
 Factorization approaches
 KaTie
 Applications for SPD processes
 KaTie+Pythia
 Pair charmonia studies at SPD
 Conclusions

 0
 0000
 000000
 00000
 00
 00 ●0
 0

Results: $\psi[1S] + \psi[2S]$

Figure 2: The left plot is from [Aaij et.al. /23].

 $\sigma_{\psi[1S]\psi[2S]}^{\text{SPS+DPS}} / \sigma_{\psi[1S]\psi[1S]}^{\text{SPS+DPS}} = 0.274 \pm 0.044 \pm 0.08$

Predictions in LO PRA+NRQCD and CSM+NLO* CPM are performed only taking into account the SPS contribution!

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	0

Pair charmonia studies at SPD: motivation

А	Nev	Exp. \pm (stat.) \pm (syst.) [pb]	ICEM [pb]	SPS [pb]	DPS [pb]		
NA3 '85, pA , $\sqrt{s} = 27$ GeV							
Pt	15 ± 4	27.0 ± 10.0	$5.0^{+38.1}_{-4.4}$	$3.1\substack{+20.0 \\ -2.6}$	$1.9^{+18.1}_{-1.8}$		
COMPASS ⁴ '22, $\pi^- A$, $\sqrt{s} = 23$ GeV							
NH ₃	25 ± 1	$10.7 \pm 2.3 \pm 3.2$	$1.3^{+3.8}_{-1.0}$	$0.9\substack{+2.3 \\ -0.6}$	$0.3^{+1.5}_{-0.2}$		
Al	1	$3.6 \pm 8.2 \pm 1.4$	$1.2\substack{+3.7 \\ -0.8}$	$0.9\substack{+2.2 \\ -0.6}$	$0.3\substack{+1.4\\-0.2}$		
W	5	$3.3 \pm 3.0 \pm 1.8$	$1.2^{+3.5}_{-0.8}$	$0.9\substack{+2.1 \\ -0.6}$	$0.3^{+1.4}_{-0.2}$		

- ► Data at low energies have not yet been described (MODELS/EXPERIMENT PROBLEMS?);
- ► ICEM predicts non-negligible DPS contribution (MPI STUDIES AT NICA?);
- Need more measurements with more statistics;
- Pair charmonia production processes are more dependent on the hadronization model than inclusive one (TEST ICEM/CSM/NRQCD);

Any chance to observe $\psi[1S] + \psi[1S, 2S]$?

⁴For details see Talk at the 3rd COMPASS «Analysis Phase» mini-workshop, 19 April '23 by V. Saleev.

Introduction	Factorization approaches	KaTie	Applications for SPD processes	KaTie+Pythia	Pair charmonia studies at SPD	Conclusions
0	0000	000000000000000000000000000000000000000	00000	00	0000	•

Conclusions

- We have made a brief review of KaTie event generator;
- ▶ We have developed a scheme for calculating heavy quarkonia and *D* mesons production using KaTie;
- At the $|\mathbf{p}_T| \ll \mu$ KaTie may be used for calculations in the TMD factorization;
- ► For the intermediate region $|\mathbf{p}_T| \sim \mu$ we may use the PRA, which takes into account power corrections $\mathscr{O}(\mathbf{p}_T^2/\mu^2)$;
- ▶ Preliminary: KaTie may be applied for NLO^{*} CPM calculations and polarizations studies;
- KaTie can be connected with Pythia;
- ► KaTie can be a powerful tool for calculating hard processes even at NICA energies.

KaTie can be found at Bitbucket/hameren/katie

The efficiency of KaTie for calculating different hard processes at high energies was demonstrated in [A. van. Hameren et.al. '18–23] and some of our works [A. Chernyshev and V. Saleev '22–24].

A. Chernyshev and V. Saleev would like to thank A. van Hameren for helpful discussions on KaTie program and H. Jung for help in TMDlib 2.x installation.

Thank you for your attention!