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Intro

* Problems in common NN APIs
 ROC auc or signal significance as fithess function
e Accounting for uncertainties of the input variables
Switching on/off some of the input neurons
Control of overtraining directly for the observable parameters
Optimization of NN hyperparameters
Memory leaks in some python-based APIs

* Evolutionary algorithms for NN training
* No need for differentiability of the fithess function
e Simultaneous optimization of parameters and hyperparameters
e Custom criteria of the overtraining
* C++ based API with cpu optimization snd transparent memory
management

* Application to the muon-pion identification



Problems in common NN APIs: differentiability of the loss

* The majority of training algorithms require (numerical) differentiability of
the fitness (loss) function. Despite all of them combine stochastic and
deterministic approaches, most are based on gradients or similar
predictions of the fitness function, for which differentiability is needed.

* Finding steepest descend even for differentiabel multidimansional
function can be a complex problem.

* Physically meaningful observables (e.g., signal over background
significance or efficiency at a certain working point) are not (or poorly)
differentiable. It means they can be poorly optimized by deterministic
algorithms.

* AUC-ROC or ‘signal significance’ are simply not implemented as optional
loss functions in existing NN APIs.

http://www.icml-2011.org/papers/198 icmlpaper.pdf



Problems in common NN APIs: uncertainties of inputs and switching off neurons

 Input variables are usually have experimental uncertainties, that have to
be accounted for.

* Some physical input variables are not defined in some input events OR
have different dimensions in different events. Accounting for such events
IS not straightforward without introducing bias to classification.

* [t may be wasteful to ignore events where not all inputs defined.



Problems in common NN APIs: overtraining

* Qvertraining consists in NN being trained to data fluctuations instead of
real kinematics, giving better performance than that possible from
signal/BG kinematic differences.

 In case real data would fluctuate in the opposite direction compared to
the training MC sample, the classification performace will

* It's desirable to control overtraining via the same fithess function for
which training is performed plus (optionally) additional kinematic variables
or NN output values. This is not directly implemented in most of existing
NN API.



 In addition to explicit parameters (synapse
weights, neuron shifts) NN includes a lot of
Implicit parameters (number of layers, neurons
In layers, activation functions, specific set of
Input variables, options for training algorithm,
etc.) that are referred to as hyperparameters.

Particular choice of hyperparameters can
substantially affect the performance of the NN.
Intuitive choices are often far from optimal.

There are applications that allow optimization
of hyperparameters (e.g., optuna). In practice
they show poor performance, since

hyperparameter space is essentially irregular.

Moreover, memory leaks is a common
problem for the hyperperameter optimization
applications being applied to python based NN
APls.

Problems in common NN APIs: hyperparameters optimization

Optimize Your Optimization

An open source hyperparameter optimization framework to automate hyperparameter searc

Key Features
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Evolutionary algorithm for NN training

* Most of this problems can be (partially) solved. However, a lot of custom
code required.

* Some of the problems (like feeding non-differentialble loss to gradient
training algorithm, optimization of hyperparameters and memory leaks)
are problematic to address.

* One of the possible solutions is using custom NN API (c++ based in my
case) that uses evolutionary algorithm for training.

* Non-differentiable functions are allowed, since no gradients are
computed.

* Uncertainties of the input values can be included and reflected to the
uncertainty of the NN input, thus automatically accounting for different
‘importance’ of different input events.

 Input neurons can be ‘switched off’ for those events where some of inputs
are not defined.

* Overtraining is controlled by comparing ROC-AUC, significance or NN
output distributions between training and testing samples.

* Hyperparameters can be optimized alongside explicit parameters, c++
code allows simple and transparent memory management.



Evolutionary algorithm for NN training

e This custom NN API is applied to the pion-muon identification task.

 Just 3 input variables are used for the test purpose (track length, track
length in RS, number of hits in RS)

* NN implementation is simple, involving classes for neuron layers and
synapse connection layers.

 Deep NN with 2 hidden layers (15, 9 neurons) is constructed, containing
189 synapse connections (~380 explicit parameters)

* Population of 50 neural networks is created

* At each training step (generation) the one or few best performing NNs
give rise to their children with random mutations of the parameters
applied

* Overtraining is controlled by the difference between ROC-AUC for
training sample and testing sample.



Track candidates: NN application. Muons and pions with 1.5GeV < pT < 2.5GeV
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» Background suppression
Possible WP:

Signal eff 9.902e-01 BG rejection 5.451e-01
Signal eff 9.813e-01 BG rejection 6.407e-01
Signal eff 6.938e-01 BG rejection 9.901e-01
Signal eff 7.972e-01 BG rejection 9.802e-01



Track candidates: NN response to signal and background
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A small contribution from non-prompt muons coming from pion decays.
These muons are softer compared to prompt muons — most of them reside below 1.5GeV



Track candidates: NN response to signal and background
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Non-prompt muons coming from pion decays can be supressed using vertex information.

A transverse distance cut of 0.5 mm is applied for the track vertices.

Pion decays in RS were not properly reconstructed in MC. One may anticipate they also have poor consistency 11
with PV candidates.



Track candidates: NN response to signal (red) and background (green)
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e Overtraining is controlled by
comparing ROC-AUC for
testing and training samples

 The observed difference is
<0.4 permille

* Comparison of NN response to
training and testing samples for
signal and background are
shown on the plots. No
systematic deviations are
seen.
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)
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All muons in MC sample come from charmonia decays.
In absence of identification, pions present ~10% background under J/psi signal. To be higher in real data, in part.,
due to kaon and proton contribution and higher multiplicity in general.
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)

hdpsimass_matched
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All muons in MC sample come from charmonia decays.
After soft cut on the NN response (NN score < 0.5) that preserve >99% of muons the level of background is much
lower
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)
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All muons in MC sample come from charmonia decays.
After tighter cut on the NN response (NN score < 0.35) that preserve ~98% of muons the background is extinct
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conclusions and plans

« Custom NN trained by evolutionary algorithm showed better performance w.r.t.
signal/background efficiency as compared to keras-based NN.
 Itis possible to implement ROC-AUC value as loss without problems in training.

* Training takes ~2-5 min on a typical CPU. For complex networks it's going to be slower...

* Instead of ROC-AUC optimization one may try optimizing a specific working point
performance, e.g., maximize signal efficiency at the point with background rejection of 99%.

* Vertexing allows to supress non-prompt muons. To be proved for conversions in RS as well
» Application of NN score to Jpsi reconstruction allow to eliminate hadronic background. To be

updated with more realistic sample including pions, kaons and muons coming from other
decays.
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Track candidates: input variables
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Track candidates: input variables
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