Моделирование смешанных радиационных полей в космических аппаратах и на ускорителях заряженных частиц

Гордеев И.С.

«Семинар ЛИТ» ОИЯИ 27.06.24

Тимошенко Геннадий Николаевич 27.10.1946 — 03.11.2022

Научный руководитель

Дань памяти

- Дозиметрия для нужд радиобиологии и спектрометрия ионизирующих излучений для обеспечения радиационной безопасности, физика защиты
- Прогнозирование радиационной обстановки для комплекса NICA
- Участник ликвидации последствий аварии на <u>Чернобыльской АЭС</u>
- Принимал участие в разработке и испытании прибора <u>ДАН</u> для марсохода <u>Curiosity</u> (НАСА), с целью определения содержания в грунте водяного льда (поверхностный нейтронный каротаж)

Актуальность

Солнечный ветер

Радиационный пояс Земли

Солнечные протонные события

Галактические космические лучи

Постоянное низкоэнергетическое излучение Солнца, представленное потоком гелиево-водородной плазмы Тороидальные области магнитосферы Земли, в которых удерживаются проникшие в магнитосферу заряженные частицы галактических и солнечных космических лучей Появляются вследствие солнечных вспышек или корональных выбросов масс, представлены высокоэнергетичными потоками протонов, электронов и ионов Состоят из ядер различных хим. элементов с широким диапазоном по энергии, постоянно действующее излучение, в межзвездной среде распространяется изотропно

Оценка радиационного риска для космонавтов, связанного с воздействием космической радиации, в частности ГКЛ, является важнейшей задачей космической радиобиологии*

*К вопросу о радиационном барьере при пилотируемых межпланетных полётах / А.И. Григорьев, Е.А. Красавин, М.А. Островский // Вестник РАН — 2017 — с. 65–69

Актуальность

Исследовать методами компьютерного моделирования внутреннее радиационное поле космического аппарата при полётах вне магнитосферы Земли для прогнозирования радиационного риска космонавтов и развить на этой основе новые методы к воспроизведению схожего по характеристикам смешанного радиационного поля в земных условиях на ускорителях ТЗЧ, что позволит проводить уникальные экспериментальные исследования в области космической радиобиологии.

Этапы моделирования

Задача прогнозирования радиационного риска при межпланетном полете является комплексной и выполнялась в несколько этапов

Общая блок-схема методики расчёта внутреннего радиационного поля космического аппарата для прогнозирования радиационного риска

Галактические космические лучи

Состав ГКЛ

ГКЛ галактические космические лучи Три наиболее интенсивные группы ядер:

- Z от 5 до 8 (группа углерода),
- Z от 10 до 15 (группа магния),
 - Z от 25 до 28 (группа железа).

Особенности:

- Высокая изотропия,
- широкие энергетические спектры,

 максимальная проникающая способность по сравнению с другими излучениями в космосе.

Состав ГКЛ по зарядовому числу

Типичные спектры наиболее распространенных частиц ГКЛ

ГКЛ зависимость от СА

Нумерация циклов начинается с нуля (с 1749 года) Продолжительность цикла около 11 лет.

При моделировании учитывалось два крайних значения СА: мин. СА (W = 0) и макс. СА (W = 190)

Модуляция спектров ГКЛ

Количество солнечных пятен в период с 1900 по 2040, цифрами подписаны циклы солнечной активности

Число Вольфа является показателем текущей солнечной активности (СА):

 $W = k \left(10g + s \right),$

k — эмпирический нормировочный коэффициент,

g — количество групп пятен,

s — число всех наблюдаемых отдельных пятен.

Спектры частиц ГКЛ

Спектры частиц ГКЛ

Для прогнозирования радиационной безопасности в космосе необходимо знать характеристики поля излучения, которому будут подвергаться космонавты

Теоретически, транспорт частиц ГКЛ в гелиосфере выражается уравнением переноса Паркера

$$\vec{\widetilde{\mathbf{K}}} = \begin{bmatrix} \kappa_{\perp} & \kappa_{\top} & 0\\ -\kappa_{\top} & \kappa_{\perp} & 0\\ 0 & 0 & \kappa_{\parallel} \end{bmatrix}$$

Тензор диффузии $\kappa_{\parallel} = \kappa = kT/m\nu$

 $\kappa_{\perp} = \kappa_{\parallel} / (1 + \omega^2 \tau^2)$ $\kappa_{\top} = \omega \tau \kappa_{\perp}$ $\omega = q B / m \quad \nu = 1 / \tau$ Для решения уравнения необходимо знать детальные пространственные, временные и энергетические зависимости основных параметров уравнения от размеров и геометрии области модуляции, что, как правило, затруднительно.

Многообразие природных процессов и связей, в которые вовлечены ГКЛ велико.

Решение, как правило, находят численно при определённых упрощениях:

- 1. Статическая гелиосфера.
- 2. Логарифмическая координатная сетка.
- 3. Как правило одномерное или двумерное решение.

11

Существуют специальные полуэмпирические модели для расчёта спектров, в которых используются некоторые упрощения в решении уравнения переноса Модели спектров частиц ГКЛ:

- Модель NASA «Badhwar-O'Neill GCR Model» (BON) [1]
- Модель Ныммика (международный стандарт ISO 15390 и ГОСТ 25645.150-90) [2]
- Модель Немецкого аэрокосмического центра (модель «Matthia et al») [3]

[1] Slaba, T. C. The Badhwar-O'Neill 2020 GCR Model [Text] / T. C. Slaba, K. Whitman // Space Weather. — 2020. — June. — Vol. 18, no. 6. — URL: https://doi.org/10.1029/2020SW002456.
[2] A model of galactic cosmic ray fluxes [Text] / R. A. Nymmik [et al.] // International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements. — 1992. — Vol. 20, no. 3. — P. 427—429.
[3] A ready-to-use galactic cosmic ray model [Text] / D. Matthiä [et al.] // Advances in Space Research. — 2013. — Vol. 51, no. 3. — P. 329—338.

Согласно модели, уравнение переноса решается в форме Фоккера-Планка

 $\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2V_{c_B}U\right) - \left|\frac{1}{3r^2}\frac{\partial}{\partial r}\left(r^2V_{c_B}\right)\right| \left|\frac{\partial}{\partial T}\left(\alpha TU\right)\right| = \frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\kappa\frac{\partial U}{\partial r}\right) \begin{array}{c} \mathcal{O}\left(r,T\right) & - u \in \kappa \text{ ом а у } \\ \varphi_{r}(\alpha TU) & - u \in \kappa \text{ om a y } \\ \varphi_{r}(\alpha TU) & - u \in \kappa \text{ om a y$ $\alpha = (T + 2m) / (T + m)$ Граничное условие

U(*r*,*T*) – искомая плотности потока частиц (интегрированное по всем направлениям)

 $f_{\rm JIMC}(T) = j_0 \beta^{\delta} (T+m)^{-\gamma}$

Описывает локальный межзвездный спектр (на расстоянии 100 а.е.), т.е. без модуляции магнитным полем (степенной закон)

Коэффициент диффузии

$$\kappa(r,t) = \frac{\beta R k_0}{\varphi(t)} \left[1 + \left(\frac{r}{r_0}\right)^2 \right]$$

Описывает состояние гелиосферы на некотором расстоянии от Солнца *г* во время t

j_0, γ и δ

первый и второй параметры фиксируют размах и наклон высокоэнергетической части спектра соответственно (различны для каждого типа ядер)

т - масса покоя протона, R - магнитная жёсткость ядра, $\varphi(t)$ - модуляционный потенциал, $r_0 = 4$ а.е. и $k_0 = 8.8 \cdot 10^{20}$ см²/с константы

Таким образом,

- В модели используется приближение сферически симметричной гелиосферы (одномерный случай),
- учитывается распространение ГКЛ с учётом диффузии в гелиосфере, конвекции и адиабатического охлаждения,
- модуляционный потенциал $\varphi(t)$ описывает СА.
- В открытом доступе существует интерфейс на сайте НАСА [1], при помощи которого возможно рассчитать спектры по модели, но нет возможности получать все необходимые спектры в пакетном режиме при конкретной СА, выражаемой числом Вольфа.

[1] OLTARIS — The On-Line Tool for the Assessment of Radiation in Space [Electronic Resource] / NASA. — URL: https://oltaris.nasa.gov/

Модель Ныммика (ISO 15390 и ГОСТ 25645.150-90)

Полуэмпирическая модель, первоначально разработанная в НИИЯФ МГУ [2] Ныммиком Р. А. и коллегами.

Используется в международном стандарте ISO 15390 и стандарте ГОСТ 25645.150-90 **[1]**

$$f_{\rm JIMC}(R) = D_i R^{-\gamma_i} \beta^{\alpha_i}$$

Локальный межзвёздный спектр (ЛМС) описывается как функция магнитной жёсткости частицы R (степенная функция) Согласно модели, спектр частицы описывается произведением двух сомножителей:

$$F_i(R,t) = f_{\mathrm{JMC}}(R)\Phi\left(R, R_0(t), q\right)$$

$$\Phi(R, R_0(t), q) = \left(\frac{R}{R + R_0(t)}\right)^{\Delta + \delta \Delta(q, R)}$$

Модуляционная функция (учитывает отклонение от степенного закона)

[1] ГОСТ 25645.150-90. ЛУЧИ КОСМИЧЕСКИЕ ГАЛАКТИЧЕСКИЕ. Модель изменения потоков частиц. — 1992. — 12 с.

[2] A model of galactic cosmic ray fluxes / R. A. Nymmik [et al.] // International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements. — 1992. — Vol. 20, no. 3. — P. 427—429.

Модель Ныммика (стандарты ISO 15390 и ГОСТ 25645.150-90) 16

$$F_i(R,t) = f_{\mathrm{JMC}}(R) \Phi(R, R_0(t), q)$$

 $R_0(t) = 0.385 + 3 \cdot 10^{-4} W(t - \Delta t(R))^{1.445}$

Модуляционный потенциал гелиосферы для момента времени t (описывает адиабатическое охлаждение) $\Phi(R, R_0(t), q) = \left(\frac{R}{R + R_0(t)}\right)^{\Delta + \delta \Delta(q, R)}$

Модуляционная функция (учитывает отклонение от степенного закона)

Модель реализована в программах CREME96/2009, предназначенных для изучения влияния космических лучей на микроэлектронику. Интерфейс для работы с программами доступен через сайт [1] (после прохождения регистрации).

Нет возможности получать все необходимые спектры в пакетном режиме [1] CRÈME site [Electronic Resource] / NASA. — URL: https://creme.isde.vanderbilt.edu/

Модель Немецкого аэрокосмического центра «Matthia et al» 17

$$\Phi_{i}(\mathbf{r}, t, E) = \int_{4\pi} \Phi_{i}(\mathbf{r}, t, E, \mathbf{\Omega}) d\Omega = = \frac{C_{i} \beta^{\alpha_{i}}}{R_{i}(E)^{\gamma_{i}}} \left[\frac{R_{i}(E)}{R_{i}(E) + (0.37 + 3 \cdot 10^{-4} \cdot W(t)^{1.45})} \right]^{b \cdot W(t) + c} \frac{A_{i}}{Z_{i}} \frac{1}{\beta}$$

Модель Немецкого аэрокосмического центра («Matthia et al») является упрощением модели Ныммика, в которой модуляция описывается одним параметром (числом Вольфа).

$$R_i(E) = \frac{A_i}{Z_i} \sqrt{E^2 + 2EE_0}$$
 — магнитная жёсткость частицы типа і с кин. энергией E, E_0 — энергия покоя на нуклон (протона);

- А_i и Z_i массовое и зарядовое число атомного ядра частицы ГКЛ типа i;
- β отношение скорости частицы к скорости света;
- C_i, α_i, γ_i параметры, специфичные для каждой частицы типа і (находятся из измерений);
- W(t) отвечает за модуляцию спектра ГКЛ в гелиосфере (число Вольфа) в момент времени t.

Модель Немецкого аэрокосмического центра «Matthia et al» 18

Модуляционная функция в модели Ныммика

$$\Phi(R, R_0(t), q) = \left(\frac{R}{R + R_0(t)}\right)^{\Delta + \delta \Delta(q, R)}$$

$$\left[\frac{R_i(E)}{R_i(E) + (0.37 + 3 \cdot 10^{-4} \cdot W(t)^{1.45})}\right]^{b \cdot W(t) + c}$$

Модуляционная функция в модели «Matthia et al»

- Параметры b и с были получены авторами путём применения процедуры минимизации, с использованием данных по углероду со спектрометра CRIS (ACE) в период с 14 августа 1997 года по 2 апреля 2012 года.
- Оказалось, их можно зафиксировать: b = 0.02 и c = 4.7, что позволяет достаточно хорошо описывать не только данные по углероду, но и по остальным ядрам при различной СА.

Данные измерений с космических аппаратов

Измерения CRIS и SIS с аппарата ACE

Свободные параметры моделей определяются по результам измерений на аппаратах, находящихся в космосе.

Для сравнения результатов расчетов по моделям, докладчиком были проанализированы данные с аппарата <u>ACE</u> (**A**dvanced **C**omposition **E**xplorer).

https://science.nasa.gov/mission/ace/

Американский космический аппарат ACE предоставляет наиболее полные данные по измерениям потоков ядер ГКЛ.

Аппарат находится на орбите Лиссажу вблизи точки Лагранжа L1: на прямой между Солнцем и Землей, на расстоянии около 1.5 млн. км от Земли, т. е. <u>вне её магнитосферы</u>.

Точки Лагранжа

Измерения CRIS и SIS с аппарата ACE

- На АСЕ установлен спектрометр космических лучей CRIS, способный измерять потоки частиц с 2 ≤ Z ≤ 28 в энергетическом интервале 100-500 МэВ/н.
- Спектрометр солнечных изотопов SIS измеряет потоки частиц с 2 ≤ Z ≤ 28 при меньших энергиях (5-150 МэВ/н).
- Во время крупных СПС, когда потоки частиц могут увеличиваться на ~4 порядка, SIS измеряет изотопный состав солнечной короны, а во время спокойного Солнца, низкоэнергетические частицы ГКЛ и состав аномальных космических лучей (АКЛ), которые проявляются как резкий скачок потока некоторых элементов ГКЛ в диапазоне энергий ~10-50 МэВ/н.

Данные измерений ACE доступны через сайт New ACE Level 2 Data Server [Electronic Resource] / ACE Science Center. — URL: http://www.srl.caltech.edu/ACE/ASC/level2/new/

TABLE I ACE instrumentation					
Sensor	Full name	Measured species	Measured quantities	Typical energy (MeV nucl ⁻¹)	Technique
CRIS	Cosmic-ray isotope spectrometer	$2 \le Z \le 30$	Z, M, E	≈ 200	$\mathrm{d}E/\mathrm{d}x - \mathrm{E}$
SIS	Solar isotope spectrometer	$2 \le Z \le 30$	Z, M, E	pprox 20	$\mathrm{d}E/\mathrm{d}x - \mathrm{E}$
ULEIS	Ultra low energy	$2 \le Z \le 28$	M, E	≈ 1	TOF – E
SEPICA	isotope spectrometer Solar energetic particle ionic charge analyzer	$2 \le Z \le 28$	Q, Z, E	≈ 1	E/Q d $E/dx - E$
EPAM	Electron, proton and alpha monitor	H, He, e^-	Z, M, E	≈ 0.3	$\mathrm{d}E/\mathrm{d}x - \mathrm{E}$
SWIMS	Solar wind ion mass spectrometer	$2 \le Z \le 30$	M, E/Q	≈ 0.001	E/Q TOF – E
SWICS	Solar wind ion composition spectrometer	$2 \le Z \le 30$	Z, E	≈ 0.001	E/Q TOF – E
SWEPAM	Solar wind electron, proton and alpha monitor	H, He, e^-	E/Q dist.	≈ 0.001	E/Q
MAG	Magnetometer	В	B_x, B_y, B_z		Triaxial fluxgate

E = energy, M = mass, Z = nuclear charge, Q = ionic charge, B = magnetic field.

Приборы на борту аппарата АСЕ

Измерения со спектрометра BESS

Данных АСЕ недостаточно для наиболее лёгких и распространенных частиц: протонов и ядер гелия, которые имеют большое значение для радиационной нагрузки на космонавтов при межпланетных перелётах.

Для заполнения пробела по данным для протонов и гелия, можно использовать результаты измерений со спектрометра BESS [1].

Схема магнитного спектрометра BESS

[1] Measurements of 0.2-20GeV/n cosmic-ray proton and helium spectra from 1997 through 2002 with the BESS spectrometer [Text] / Y. Shikaze [et al.] // Astroparticle Physics. — 2007. — Vol. 28, no. 1. — P. 154—167.

Измерения BESS

Фотография спектрометра BESS на аэростате

Сравнение моделей с данными измерений ACE и BESS 23

Для дальнейшей программной реализации и моделирования взаимодействия ГКЛ с аппаратом необходимо было выбрать модель с наилучшим соответствием данным измерений при различной СА

Сравнение результатов расчетов по различным моделям спектров ГКЛ с данными измерений BESS и ACE при минимуме (а) и максимуме (б) СА для некоторых частиц ГКЛ Модель «Matthia et al» хорошо согласуется с экспериментальными данными и другими моделями, а также позволяет задать модуляцию спектров при помощи одного параметра: числа Вольфа.

Поэтому она была выбрана для дальнейших расчетов.

Маркерами отмечены данные измерений:

- треугольники BESS,
- заполненные круги АСЕ (CRIS),
- открытые круги АСЕ (SIS)

Программа GCRs Spectra

Была создана программа *GCRs Spectra*, которая позволяет получать спектры и интегральные значения (флюенс) частиц ГКЛ с Z от 1 до 28.

В основу алгоритма работы программы была положена модель Немецкого аэрокосмического центра («Matthia et al»)

Программа написана на Python 3 с использованием модулей:

- NumPy, Pandas (расчеты по модели)
- Matplotlib (построение графиков)
- PyQt5 (графический интерфейс)

Графический пользовательский интерфейс программы GCRs Spectra: главное окно (слева) и окно с результатом (справа)

Программа GCRs Spectra

При помощи разработанной программы были получены спектры всех частиц ГКЛ с Z от 1 до 28 при двух крайних значениях СА: W = 0 (мин. СА) и W = 190 (макс. СА).

Результаты работы программы использовались в качестве входных данных для последующего компьютерного моделирования взаимодействия частиц ГКЛ с моделью космического аппарата.

Моделирование производилось при помощи Монте-Карло программ переноса ионизирующего излучения через вещество.

Получено свидетельство о государственной регистрации программы для ЭВМ

Моделирование внутреннего радиационного поля космического аппарата

Модель космического аппарата

Модель обитаемого модуля космического аппарата: общий вид с нормирующей сферой и источниками ГКЛ (слева); справа показан вид в разрезе с обозначением детектирующих областей (детекторов) Модель обитаемого модуля космического корабля:

- Полый цилиндр Ø 6 м и длиной 12 м (V = 339.3 м³).
- Алюминиевая оболочка толщиной 15 г/см² (ρ_{Al} = 2.7 г/см³).
- Заполнен сухим воздухом под нормальным давлением.

Модель является приближением помещения, в котором космонавты будут проводить бо́льшую часть времени при межпланетном перелете.

Полагалось, что пребывание космонавтов в любом месте модуля равновероятно в течение продолжительности всего полёта. Тем не менее, для проверки однородности внутреннего радиационного поля, внутри модуля задавались также выделенные детектирующие области пространства (детекторы), в которых производился расчёт плотности потока частиц.

Формирование радиационных полей внутри космического аппарата 28

Экипаж будет подвержен облучению вторичным излучением, которое формируется в ядерных реакциях ГКЛ с оболочкой корабля.

Радиационное поле внутри корабля будет **смешанным:** существенно отличающимся от ГКЛ вне корабля и от природных видов радиации.

При моделировании необходимо было учесть все возможные ядерные реакции, происходящие в оболочке. Для подобных задач в настоящее время широко применяются **транспортные коды**, способные проводить расчет переноса ИИ различного типа через вещество.

Транспортные коды делятся на основе реализуемых численных методов на <u>детерминистические</u> и <u>статистические (вероятностные)</u>.

Детерминистический код HZETRN

Примером детерминистического транспортного кода является HZETRN (**H**igh charge (**Z**) and **E**nergy **TR**a**N**sport), разрабатываемый HACA. Код основывается на численном решении уравнений переноса (кинетическое уравнение Больцмана):

При решении уравнения существует ряд сложностей и необходимо прибегать к ряду приближений:

- распространение вторичных частиц в том же направлении что и начальные, т. е. прямо вперёд
- дважды дифференциальные сечения для рождения нейтронов и других частиц разделяют на прямую и изотропную составляющие
- пренебрежение процессами фрагментации ядра-мишени
- до определённого времени невозможно было в принципе произвести генерацию и транспорт мезонов, фотонов и лептонов
- простейшие геометрии типа: плита-детектор, сфера-детектор

Код является эффективным при вычислениях, но недостаточно точным при описании некоторых важных процессов, что может оказаться критичным при описании более сложных геометрий и при задании нетривиальных конфигураций первичного пучка.

Альтернатива: Монте-Карло моделирование Плюсы: высокая точность, возможность задания практически любой сложной геометрии Главный минус: эффективность вычислений

Монте-Карло коды

Для моделирования процесса переноса частиц методом Монте-Карло (МК) необходимо:

- 1. Процедура описания геометрии задачи: обычно используется простая линейная алгебра, векторное исчисление и комбинаторная геометрия.
- 2. Описание физических моделей различных взаимодействий: используется большой объём данных по сечениям и специальные генераторы ядерных реакций (которые обычно также основаны на методе МК).
- 3. Задание специальных процедур сбора результатов, позволяющих оценить искомые величины (флюенс, дозы, и т. д.).
- **4.** Важная часть МК: генератор псевдослучайных чисел (ГПСЧ) алгоритм, позволяющий получать квазислучайные последовательности, которые зависят от значения начального числа (seed)

Моделирование переноса частиц реализовано в специальных кодах: SHIELD, GEANT4, FLUKA, PHITS, построенных на базе Монте-Карло подходов. Данные коды позволяют использовать практически любую сложную геометрию и получать очень точные результаты (ограниченные используемыми физ. моделями и сечениями)

В работе использовались FLUKA и PHITS, результаты работы программ сверялись на тестовых расчётах с экспериментальными данными

Сравнение результатов работы кода HZETRN с МК кодами 32

Другими авторами [1] приводились сравнения работы кода HZETRN и известных Монте-Карло программ GEANT, SHIELD, FLUKA для некоторых типов реакций.

Отмечается, что код HZETRN плохо воспроизводит выход некоторых частиц.

HZETRN сильно занижает количество протонов и нейтронов с энергиями до ~500 МэВ. Это критично для задач радиационной безопасности, т. к. именно эти частицы являются дозообразующими.

[1] Comparing HZETRN, SHIELD, FLUKA and GEANT transport codes [Text] / J. W. Norbury [et al.] // Life Sciences in Space Research. — 2017. — Vol. 14. — P. 64—73.

Монте-Карло коды

Расчет внутреннего поля излучения при помощи FLUKA 34

FLUKA (CERN) – универсальный программный пакет для расчёта переноса частиц и взаимодействий с веществом, охватывающий широкий спектр применения. На данный момент имеет две независимые ветки разработки: от INFN и CERN.

FLUKA использовалась для моделирования взаимодействия частиц ГКЛ с моделью обитаемого модуля космического аппарата

Код написан на довольно архаичном стандарте Fortran 77, при «нестандартных» задачах пользователю необходимо определять необходимый функционал при помощи пользовательских подпрограмм

Код выполняется на *nix OC

FLUKA

Физические модели и данные, используемые во FLUKA при транспорте частиц через вещество

РНІТЅ для разработки модели симулятора ГКЛ

PHITS

PHITS – универсальный транспортный МК код, разрабатываемый Агентством по атомной энергии (JAEA, Япония). Данный код, также как и FLUKA, способен обеспечивать перенос большинства видов частиц, но с энергиями вплоть до 1 ТэВ (на нуклон для тяжёлых ядер) и использованием собственных моделей ядерных реакций и библиотек данных.

PHITS применялся на этапе разработки симулятора ГКЛ для расчёта вторичного излучения из набора мишеней различных толщин.

Код написан на Fortran

Отличия кода PHITS от FLUKA:

- на программном уровне поддерживает технологии MPI и ОрепMP, что позволяет существенно ускорить расчёты, задействуя многопоточность процессора.
- выполняется на операционных системах: Windows, Mac и Linux.

транспорте частиц через вещество

PHITS

Сравнение кодов FLUKA и PHITS (выход нейтронов)

Был проведен ряд тестовых расчетов для проверки результатов работы кодов с экспериментальными данными.

Внутри космических аппаратов образуются нейтроны, которые будут являться значимой компонентой смешанного радиационного поля. Вклад в дозу от этой компоненты должен быть правильно оценён.

Для проверки точности воспроизведения выхода вторичных нейтронов под различными углами, было проведено сравнение с экспериментом [1]

Проверка моделей RQMD (FLUKA) и JQMD (PHITS)

[1] Neutron yields from thick C, Al, Cu, and Pb targets bombarded by 400 MeV/nucleon Ar, Fe, Xe and 800 MeV/nucleon Si ions [Text] / T. Kurosawa [et al.] // Phys. Rev. C. — 2000. — Sept. — Vol. 62, no. 4. — P. 044615.

Сравнение кодов FLUKA и PHITS (сечения фрагментации)

Вклад в дозу от тяжелых заряженных частиц также является значительным и важно правильно моделировать фрагментацию ядерснарядов.

Периферийные ядро-ядерные столкновения приводят к реакциям сколов ядер-снарядов, а осколки возбуждённого ядра-мишени, в свою очередь, будут распадаться с испарением нуклонов и лёгких ядер.

Было проведено сравнение результатов расчётов с имеющимися литературными данными о сечениях фрагментации ядер железа с энергией 1.05 ГэВ/н на алюминии **[1]**.

Проверка моделей RQMD (FLUKA) и JQMD (PHITS)

37

Сравнения расчетных и экспериментальных сечений фрагментации для ядер железа энергии 1.05 ГэВ/н на мишени из алюминия

[1] Heavy fragment production cross sections from 1.05 GeV/nucleon ⁵⁶Fe in C, Al, Cu, Pb, and CH₂ targets [Text] / C. Zeitlin [et al.] // Phys. Rev. C. — 1997. — July. — Vol. 56, no. 1. — P. 388—397.

Сравнение кодов FLUKA и PHITS (межъядерный каскад)

Для сравнения моделей межъядерного каскада, были проведены тестовые расчеты выхода частиц из толстой мишени алюминия

На рисунке показаны выходы легких фрагментов из алюминиевой (толстой) мишени, обусловленные испарительными и каскадными процессами.

Для ядер гелия в случае PHITS есть плавный переход между низкоэнергетической испарительной частью и каскадной, а в FLUKA происходит их чёткое разделение.

Выход лёгких фрагментов в прямом направлении (раствор угла 5 градусов) и в переднюю полусферу, при взаимодействии ядер Fe энергии 5 ГэВ/н с мишенью из алюминия толщиной 15 г/см²

38

Сравнение кодов FLUKA и PHITS (выход из толстой мишени) 39

10-3

10-4

10-5

10

 10^{-8}

10-5

Fe⁻¹] 10 ⁵⁶Fe+(C₂H₄)_n (1 см) = Х

Необходимо было также проверить образование фрагментов на толстых полиэтиленовых и составных (полиэтилен+железо) мишенях.

Код PHITS использовался для расчета спектров вторичного излучения за набором толстых мишеней. Результаты использовались для разработки симулятора ГКЛ.

Результаты показывают, что для данной задачи пригодны оба кода. PHITS был выбран из утилитарных соображений (лучшей эффективности).

10-

10-3

 10^{-4}

10-5

10-6

10⁻⁷

 10^{-8}

10⁻⁹

Fe⁻¹]

⁵⁶Fe+(С₂Н₄)_n (25 см) =Х

мишеней $(C_2H_4)_n$ с толщинами 1, 25 и 50 см и составной мишени из 30 см (C₂H₄)_n + 20 см железа, при взаимодействии ядер Fe энергии 1 ГэВ/н

Методика расчёта

Методика расчёта спектров частиц в детекторах

Спектры рассчитывались по FLUKA (оценщик USRTRACK) на равномерной логарифмической энергетической сетке $\{E_k\}$, шириной $\Delta E = E_{k+1} - E_k$. Каждая взвешенная длина пути суммируется в соответствующем энергетическом интервале, энергетический спектр среднего по объёму флюенса оценивается как:

 $\bar{\Phi}_V(E) \equiv \frac{1}{V} \int_V dV \int_{4\pi} \Phi(\mathbf{r}, E, \mathbf{\Omega}) d\mathbf{\Omega} \simeq \frac{\sum_{i=1}^N \sum_{j=1}^{n_i} W_i^j s_i^j}{NV \Delta E}$

Расположение детекторов

Зная тип иона и его энергию, шкалу можно переопределить в ЛПЭ, для этого использовалась программа АТІМА**[1]**. Таким образом были определены спектры $\bar{\Phi}_V(L)$

[1] https://web-docs.gsi.de/~weick/atima/

V - любой выпуклый объем

Оценка по длине пробега

Оценщик эффективный в вычислительном плане, потому как по ходу выполнения программы длины треков в регионах просчитываются заранее.

Необходимо соблюдать компромисс: слишком маленький объём усложняет набор статистики, а слишком большой приводит к огрублению получаемых результатов. Из этих соображений диаметр для детекторов-сфер был выбран величиной в 1 метр.

Методика определения эффективной дозы в детекторах 42

Эффективная доза отражает риск возникновения отдалённых последствий облучения всего организма человека с учётом радиочувствительности отдельных органов малыми дозами.

В Публикации 116 МКРЗ [1] приводятся коэффициенты для возможных геометрий облучения (см. ниже), они предназначены очень широкой и произвольной категории лиц (заведомо консервативные).

Космонавты представляют собой, как правило, узкий круг лиц: никогда не курившие мужчины, в возрасте 30–60 лет [2]

Геометрии облучения

[1] Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116, Ann. ICRP 40(2–5).
[2] Timoshenko, G. N. Fluence-to-effective dose conversion coefficients for male astronauts // Journal of radiological protection (2019) Vol. 39, issue 2, P. 511—521.

Эффективная доза для частиц ј определяется через свёртку спектров с соответствующими коэффициентами:

Примеры коэффициентов конверсии флюенсэффективная доза для космонавтов на основе различных физических характеристик

Результаты моделирования внутреннего радиационного поля космического аппарата

Результаты моделирования (флюенс)

Были получены спектры частиц внутреннего смешанного радиационного поля: p, n, γ, e[±], μ[±], π[±], K[±], d, t и частицы c Z от 2 до 28.

Отношение флюенса тяжёлых ядер во внутреннем поле увеличивается по мере роста Z, особенно сильно в мин. СА (для ядер Fe и Ni в 6 раз).

Увеличение флюенса лёгких частиц (р, Li, Be) во внутреннем поле излучения происходит вследствие фрагментации первичных частиц ГКЛ. При макс. СА отношение увеличивается медленнее с ростом Z, ввиду более жестких спектров частиц ГКЛ.

Вклад нейтронов во внутреннем поле составляет около **30%** по флюенсу и практически не зависит от СА.

Отношение флюенсов первичных частиц ГКЛ (внешний флюенс) и частиц внутри модуля (внутренний флюенс) при мин. (W = 0) и макс. (W = 190) СА

<u>Результат:</u> оболочка 15 г/см² **является размножающей мишенью**, т. е. внутри модуля возрастает количество лёгких частиц, в особенности: протонов, лёгких ядер лития и бериллия, а также возникают новые частицы: n, γ, е[±], μ[±], π[±], К[±].

Результаты моделирования (спектры ЛПЭ)

Для максимума СА показаны наиболее значимые вклады (при минимуме СА наблюдается аналогичная ситуация).

Различимы пики:

- В области низкой ЛПЭ (0.15-0.3 кэВ/мкм) протоны и <u>е±</u>, спектр протонов достигает значений вплоть до 79 кэВ/мкм.
- Пик от ядер ⁴Не находится вблизи ~0.63-1.25 кэВ/мкм и простирается до значения 251 кэВ/мкм.

Наиболее интересным является то, что спектры даже относительно лёгких ядер Ве, В, а также более тяжёлых С и О достигают крайне высоких значений ЛПЭ: вплоть до 500-1000 кэВ/мкм. Наиболее тяжёлые частицы с Z от 20 до 28 вносят вклад только в ЛПЭ свыше 125 кэВ/мкм.

Суммарные расчетные спектры ЛПЭ (в воде) при мин. (W = 0) и макс. (W = 190) СА, с парциальными вкладами от некоторых частиц в общий спектр при макс. СА

<u>Результат:</u> детально показан вклад каждой частицы в суммарный спектр ЛПЭ

Результаты моделирования (сравнение спектров ЛПЭ)

Отличия обуславливаются различием в толщине защиты на аппаратах, которая варьируется в пределах: ~ 20-27.5 г/см² для RAD [1] и 1-70 г/см² (в среднем ~ 10 г/см²) для «Люлин-МО» [2] и толщиной оболочки, принятой в расчёте 15 г/см², а также периодом СА в измерениях и в расчёте.

Данные RAD и «Люлин-МО» по ЛПЭ в воде получаются путём конвертации dE/dx в кремнии, где для перевода dE/dx в кремнии в ЛПЭ в воде используется постоянный коэффициент 1.38 ± 0.08.

Сравнение расчётных суммарных спектров ЛПЭ (в воде) при минимуме (W = 0) и максимуме (W = 190) СА с измерениями RAD [1] и «Люлин-МО» [2]

[1] Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover [Text] / D. M. Hassler [et al.] // Science. — 2014. — Jan. — Vol. 343, no. 6169. — P. 1244797.

[2] Charged particles radiation measurements with Liulin-MO dosimeter of FREND instrument aboard ExoMars Trace Gas Orbiter during the transit and in high elliptic Mars orbit [Text] / J. Semkova [et al.] // Icarus. — 2018. — Vol. 303. — P. 53—66.

Результаты моделирования (дозы)

В целом, суммарная доза по всем частицам, при различных положениях внутри модуля меняется незначительно.

Наибольший вклад в дозу вносят: протоны (~32-48 %) и нейтроны (~12-16 %), а также п[±] -мезоны (~5-10 %), вклад от ядер ⁴Не ~8-9.4 %.

Вклады частиц в суммарную эффективную дозу в зависимости от положения внутри модуля при мин. (слева) и макс. (справа) СА

Результаты моделирования (суммарные дозы)

Суммарная доза зависит от времени транзита и пребывания, в таблице приведены результаты расчета и измерений прибора RAD [1]

При отсутствии в период миссии мощных протонных событий на Солнце суммарный риск космонавтов за всю миссию не превысит регламентированного HACA 3-х процентного значения (3% REID – «Risk of Exposure Induced Death»).

Таким образом, даже при наихудшем сценарии доза для космонавтов в ходе марсианской миссии не превысит принятые в России нормативы. Результаты были опубликованы в статье [2]. Сравнение полученных в расчёте значений доз с измерениями прибора RAD [1] при различной солнечной активности

	Мин. СА $(W \sim 6)$ RAD	Мин. СА (W = 0) расчёт	Макс. CA $(W \sim 86)$ RAD	Макс. СА (W = 190) расчёт
Транзит (2×180 дней)	0.64-0.80 Зв	0.35-0.4 Зв	0.57 Зв	0.09-0.1 Зв
Пребывание (500 дней)	0.36 Зв	0.36 Зв	0.32 Зв	0.32 Зв
Суммарная доза	1—1.2 Зв	0.71-0.76 Зв	0.9 Зв	0.41-0.42 Зв

Для всех вычислений была задействована платформа HybriLIT ЛИТ и сервера ЛРБ ОИЯИ.

[1] Mars' Surface Radiation Environment Measured with the Mars Science Laboratory's Curiosity Rover [Text] / D. M. Hassler [et al.] // Science. — 2014. — Jan. — Vol. 343, no. 6169. — P. 1244797.
 [2] Timoshenko, G. N. Estimation of the Astronaut's Doses inside the Spacecraft Habitable Module in Deep Space [Text] / G. N.

Timoshenko, I. S. Gordeev // Physics of Particles and Nuclei. — 2020. — Vol. 51, no. 5. — P. 988—993.

Моделирование смешанного поля излучения на ускорителях заряженных частиц

Активный подход (НАСА)

Активный подход параметры пучка меняются за время облучения

Ключевые особенности

- Сложно реализовать на других ускорительных комплексах
- Спектры квазинепрерывные
- Облучение является скорее последовательным, нежели одновременным

Смешанное поле излучения, имитирующее радиационную обстановку в космосе, создается при помощи быстро сменяющихся пучков: меняется как тип, так и энергия частиц в пучке [1,2]

[1] NASA's first ground-based Galactic Cosmic Ray Simulator: Enabling a new era in space radiobiology research [Text] / L. C. Simonsen [et al.] // PLOS Biology. — 2020. — May. — Vol. 18, no. 5. — e3000669.

[2] Galactic cosmic ray simulation at the NASA space radiation laboratory - Progress, challenges and recommendations on mixed-field effects [Text] / J. L. Huff [et al.] // Life Sciences in Space Research. — 2022.

Пассивный подход (Дж. Ченселлор и др.)

Смешанное поле излучения создается одним моноэнергетическим пучком Fe, падающим на специальный «модерирующий блок» (конвертер)

Ключевые особенности

- Конкретная конструкция «модерирующего блока» (конвертера) не раскрывается (запатентована) [1]
- Авторы заявляют об успешном воспроизведении лишь суммарного спектра ЛПЭ (могут отсутствовать некоторые частицы и энергии (?))
- Поле вторичных частиц за конвертером может быть неоднородно в области облучения

Пассивный подход - пучок остаётся неизменным в течение всего сеанса облучения

[1] Подобный суммарный спектр ЛПЭ может быть воспроизведен протонами и ядрами гелия с широкими энергетическими спектрами [какие ТЗЧ?]

[1] Targeted Nuclear Spallation from Moderator Block Design for a Ground-Based Space Radiation Analog [Text] / J. C. Chancellor [et al.]. — 2017.

Гибридный активно-пассивный подход (ESA/GSI)

Для смешанного поля излучения используется комбинация геометрически сложных, пассивных модуляторов пучка и смена энергии пучка

Ключевые особенности

- Сложность создания однородного поля вторичных частиц за модуляторами
- Тестирование проводилось только для спектра протонов (СПС), подходит ли для моделирования ГКЛ?
- Изготовление модуляторов является сложным и требует высокой точности (используется 3D-принтер)
- Облучение является скорее последовательным, нежели одновременным

Гибридный (активно-пассивный подход) заключается в изменении параметров пучка и модулятора за время облучения

Первая версия симулятора воспроизводит только спектр протонов СПС

[1] Schuy, C. Hybrid Active-Passive Space Radiation Simulation Concept for GSI and the Future FAIR Facility [Text] / C. Schuy, U. Weber, M. Durante // Frontiers in Physics. — 2020. — Vol. 8.

Новый тип симулятора ГКЛ (ЛРБ ОИЯИ)

Предлагаемый

симулятор ГКЛ

описывается СЛАУ

3D визуализация симулятора ГКЛ

$$f_{\rm W} = \begin{pmatrix} \frac{f_{1,D_1}}{F_{1,\rm ref}} & \frac{f_{1,D_2}}{F_{1,\rm ref}} & \cdots & \frac{f_{1,D_N}}{F_{1,\rm ref}}\\ \frac{f_{2,D_1}}{F_{2,\rm ref}} & \frac{f_{2,D_2}}{F_{2,\rm ref}} & \cdots & \frac{f_{2,D_N}}{F_{2,\rm ref}}\\ \vdots & \vdots & \ddots & \vdots\\ \frac{f_{26,D_1}}{F_{26,\rm ref}} & \frac{f_{26,D_2}}{F_{26,\rm ref}} & \cdots & \frac{f_{26,D_N}}{F_{26,\rm ref}} \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} P_{D_1} \\ P_{D_2} \\ \vdots \\ P_{D_N} \end{pmatrix} \quad \mathbf{J} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{pmatrix}$$

матрица взвешенных с референсными значениями флюенсов

Параметры модели (площадь и экспозиция)

Схема конструкции конвертера Мишени Fe

Конвертер

 \mathbf{S}_i — занимаемая i-ой мишенью площадь сектора

- Конвертер С_j составной из мишеней D_i цилиндр,
- Мишень цилиндрический сегмент определённой толщины D_i (гомогенный или гетерогенный).

[1] <u>Gordeev, I. S.</u> A new type of ground-based simulator of radiation field inside a spacecraft in deep space [Text] / <u>I. S. Gordeev</u>, G. N. Timoshenko // Life Sciences in Space Research. -- 2021. ---Vol. 30. --- P. 66-71.

Аналитическое описание симулятора ГКЛ

$$\underbrace{f_{w}P = J}_{f_{w}} = \int_{f_{w}} f_{w} = \begin{pmatrix} \frac{f_{1,D_{1}}}{F_{1,ref}} & \frac{f_{1,D_{2}}}{F_{2,ef}} & \cdots & \frac{f_{1,D_{N}}}{F_{1,ef}} \\ \frac{f_{2,D_{1}}}{F_{2,ref}} & \frac{f_{2,D_{2}}}{F_{2,ref}} & \cdots & \frac{f_{2,D_{N}}}{F_{2,ef}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{f_{26,D_{1}}}{F_{26,ref}} & \frac{f_{26,D_{2}}}{F_{26,ref}} & \cdots & \frac{f_{26,D_{N}}}{F_{26,ref}} \end{pmatrix} \qquad \text{матрица флюенсов, в з вешенны х с с сответствующим и референсными значениями }$$

$$= \begin{pmatrix} f_{1,D_{1}} & f_{1,D_{2}} & \cdots & f_{1,D_{N}} \\ f_{2,D_{1}} & f_{2,D_{2}} & \cdots & f_{2,D_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ f_{26,D_{1}} & f_{2,D_{2}} & \cdots & f_{2,D_{N}} \\ \vdots & \vdots & \ddots & \vdots \\ f_{26,D_{1}} & f_{26,D_{2}} & \cdots & f_{26,D_{N}} \end{pmatrix} \qquad \text{Составлена делением построчно матрицы флюенсов вторичных частиц за мишенями на элементы вектора референсных значений } \mathbf{F} = \begin{pmatrix} F_{1,ref} \\ F_{2,ref} \\ \vdots \\ F_{26,ref} \end{pmatrix} \qquad \text{Вектор референсных значений}$$

Значения флюенса вторичных частиц (на один ион) за мишенями толщины D_i .

ГS Данные получены по PHITS 3.20 (JQMD + GEM и JAMQMD + GEM)

Референсные значения – флюенс частиц в космическом аппарате (результаты расчетов).

Значения могут быть заданы для макс. или мин. СА, либо другим произвольным образом, в зависимости от цели моделирования

Аналитическое описание симулятора ГКЛ

$$f_{\mathbf{w}}\mathbf{P} = \mathbf{J}$$

$$\mathbf{P} =$$

$$P_{D_{i}} = \sum_{j=1}^{K} t'_{C_{j}} a'_{C_{j},D_{i}}$$

$$\sum_{i=1}^{N} a_{C_{j},D_{i}} = A_{\text{tot}}$$

 $a_{C_{j},D_{i}}$ – площадь сектора мишени D_{i} в конвертере C_{j} A_{tot} – площадь торца конвертера

Нормировка

$$\sum_{j=1}^{K} \frac{t_{C_j}}{T_{\text{tot}}} = \sum_{j=1}^{K} t'_{C_j} = 1$$

 PD1

 Параметры модели.

 PD2

 Отвечают за вклад флюенса
 каждой мишени в суммарное
 поле облучения за
 симулятором

$$\sum_{j=1}^{K} t_{C_j} = T_{\text{tot}}$$

 t_{C_j} – время экспозиции конвертера C_j T_{tot} – общее время экспозиции симулятора N – число мишеней в конвертере C_j

К – число конвертеров в симуляторе

Число I – интенсивность (с⁻¹) гипотетического пучка ускорителя, при которой обеспечивается необходимое радиационное поле

$$f_{\rm w}\mathbf{P}=\mathbf{J}$$

Оптимизация (NNLS) $\arg\min_{p} \|f_{\mathbf{w}}\mathbf{P} - \mathbf{J}\|_{2}, \quad p \ge 0$

Задача подбора оптимальных параметров модели решается путём математической оптимизации, методом неотрицательных наименьших квадратов (NNLS), т. к. компоненты вектора-столбца **Р** не могут быть отрицательными.

Алгоритм NNLS был предложен Лоусоном и Хэнсоном [1]. Реализация этого алгоритма доступна на языке Python в модуле SciPy как функция optimize.nnls, которая является обёрткой оригинального Fortran кода.

[1] Lawson, C. L. Solving least squares problems [Text] / C. L. Lawson, R. J. Hanson // Journal of the American Statistical Association. — 1997. — Vol. 72, no. 360. — P. 930—931.

Программная реализация модели симулятора ГКЛ

Изложенная выше модель реализована в специально разработанном программном обеспечении (ПО). ПО является Python 3 пакетом (с названием **gcrs**), который содержит набор специальных модулей с функциями, отвечающими за обработку и отображение данных.

На исходный код программы были получены свидетельства о государственной регистрации программы для ЭВМ. Описание математической модели и разработанного кода приведено автором в публикации [1]. Разработка кода продолжается.

Communications».

обеспечения для компьютерного моделирования симулятора ГКЛ

Далее показаны результаты моделирования для предлагаемой схемы симулятора

Путем компьютерного моделирования показано, что предлагаемая схема позволяет корректно воспроизводить частицы смешанного радиационного поля по зарядовому числу.

№ конвертера <i>С</i> , 	Кол-во мишеней	Толщина мишени, D _i (см)	Доля по площади, a_{C_j,D_i}^\prime	Доля по времени, $t_{C_j}^\prime$	Группа фрагментов
1	10	1	0.028	0.0018185	17 - 27
		8	0.056		
		15	0.112		
		17	0.112		
		20	0.131		
		23	0.150		
		24	0.112		
		25	0.112		
		25.5	0.0935		
		26	0.0935		
2	2	50	0.8	0.0163636	9 - 16
		30	0.2		
3	1	50	1	0.16363	3 - 8
4	1	30 (C ₂ H ₄) _n + 20 (Fe)	1	0.81818	1-2

Сравнение зарядового распределения компонентов внутреннего радиационного поля космического аппарата (расчетных) при мин. (W = 0) и макс. (W = 190) СА с распределением от симулятора ГКЛ

Характеристики мишеней и конвертеров симулятора ГКЛ

Сравнение суммарного спектра ЛПЭ за симулятором ГКЛ и спектров ЛПЭ внутреннего радиационного поля космического аппарата при мин. (W = 0) и макс. (W = 190) СА

Сравнение дифференциальных энергетических спектров плотности потока

Сравнение дифференциальных энергетических спектров плотности потока

Сравнение дифференциальных энергетических спектров плотности потока

Новый тип симулятора ГКЛ (ЛРБ ОИЯИ)

Ключевые особенности

Схема симулятора может быть реализована в рамках комплекса NICA [1,2], на одном из каналов для прикладных исследований, например, СИМБО

[1] <u>Gordeev, I. S.</u> A new type of ground-based simulator of radiation field inside a spacecraft in deep space [Text] /
I. S. Gordeev, G. N. Timoshenko // Life Sciences in Space Research. — 2021. — Vol. 30. — P. 66—71.
[2] Timoshenko, G. N. Reference Radiation Field for GCR Chronic Exposure Simulation [Text] / G. N. Timoshenko, <u>I.</u>
S. Gordeev // Physics of Particles and Nuclei Letters. — 2021. — Vol. 18, no. 7. — P. 799—805.

- Предлагаемый метод позволяет воспроизвести за симулятором ядра ГКЛ с Z в диапазоне от 1 до 27
- Симулятор правильно воспроизводит как суммарное распределение по ЛПЭ, так и энергетические спектры частиц
- Обеспечивается однородность полей вторичных частиц за конвертерами (вращением на оси пучка)
- Облучение происходит смешанным полем излучения одновременно различными типами частиц
- Установка имеет относительно простую конструкцию и может быть выполнена на ускорителях, способных выдавать равномерный пучок железа с энергией 1 ГэВ/н

Апробация

Основные результаты представленного цикла работ докладывались автором на:

- ежегодной научно-практической конференции студентов, аспирантов и молодых специалистов государственного университета «Дубна» в 2017, 2018 и 2019 годах;
- VIII Съезде по Радиационным Исследованиям **2021** года в Москве;
- XXVI международной научной конференции молодых ученых и специалистов в **2022 году** (AYSS-2022);
- рабочем совещании «Прикладные исследования на комплексе NICA: перспективы сотрудничества РСО-Алания – ОИЯИ» в 2023 году;
- Третьем Международном форуме «Физика 2024» (Самарканд, Узбекистан).

Автор был удостоен **первой премии** ОИЯИ «За научнотехнические прикладные работы» за **2021 год**.

Автор является **победителем** конкурса «Научных работ молодых ученых и преподавателей государственного университета «Дубна» в **2023 году** за цикл работ. УЧЕНЫЙ СОВЕТ ОБЪЕДИНЕННОГО ИНСТИТУТА 25 ФЕВРАЛЯ 2022 ГОДА ПРИСУДИЛ

> ПЕРВУЮ ПРЕМИЮ ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ

> > Ивану Сергеевичу ГОРДЕЕВУ

> > > ЗА РАБОТУ

«РАСЧЕТ И МОДЕЛИРОВАНИЕ ПОЛЯ ИЗЛУЧЕНИЯ ВНУТРИ КОСМИЧЕСКОГО АППАРАТА ВНЕ МАГНИТОСФЕРЫ ЗЕМЛИ»

Первая премия ОИЯИ (2021)

Патент

На схему симулятора ГКЛ был оформлен патент:

Устройство моделирования на пучках тяжелых ионов высокой энергии полей смешанного излучения для целей экспериментальной радиобиологии [Текст] : пат. 2021105845 RU : МПК G21K 5/00 / Г. Н. Тимошенко, <u>И. С. Гордеев</u> (RU) ; заявитель Объединенный институт ядерных исследований (ОИЯИ). — № 2761376 ; заявл. 05.03.2021; опубл. 07.12.2021, Бюл.164 № 34; приоритет 26.04.2021 (RU). — 17 с.

Патент на изобретение

Свидетельства регистрации программ для ЭВМ

GCRs Spectra

gcrs: оптимизация

gcrs: визуализация

Публикации

Изложенные в докладе результаты опубликованы автором в 7 работах:

- Gordeev, I. S. A new type of ground-based simulator of radiation field inside a spacecraft in deep space / <u>I. S.</u> <u>Gordeev</u>, G. N. Timoshenko // Life Sciences in Space Research. — 2021. — Vol. 30. — P. 66—71. (Scopus, WoS).
- <u>Gordeev, I. S.</u> Computer modeling of a new type galactic cosmic rays simulator / <u>I. S. Gordeev</u>, A. N. Bugay. 2024. Preprint of the Joint Institute for Nuclear Research [E11-2024-17]. Submitted to «Computer Physics Communications».
- Timoshenko, G. N. Simulation of radiation field inside interplanetary spacecraft / G. N. Timoshenko, <u>I. S.</u> <u>Gordeev</u> // Journal of Astrophysics and Astronomy. — 2020. — Vol. 41, no. 1. — P. 5. (Scopus).
- Timoshenko, G. N. Computation of linear energy transfer of space radiation in biological tissue analog / G. N. Timoshenko, <u>I. S. Gordeev</u> // Planetary and Space Science. — 2021. — Vol. 199. (Scopus, WoS).
- Timoshenko, G. N. Estimation of the Astronaut's Doses inside the Spacecraft Habitable Module in Deep Space / G. N. Timoshenko, <u>I. S. Gordeev</u> // Physics of Particles and Nuclei. — 2020. — Vol. 51, no. 5. — P. 988—993. (Scopus).
- Timoshenko, G. N. Reference Radiation Field for GCR Chronic Exposure Simulation / G. N. Timoshenko, <u>I. S.</u> <u>Gordeev</u> // Physics of Particles and Nuclei Letters. — 2021. — Vol. 18, no. 7. — P. 799—805. (Scopus).
- Timoshenko, G. N. Particle accelerator-based simulation of the radiation environment on board spacecraft for manned interplanetary missions / G. N. Timoshenko, A. R. Krylov, M. Paraipan, <u>I. S. Gordeev</u> // Radiation Measurements. — 2017. — Vol. 107. — P. 27—32. (Scopus, WoS).

Визуализация прохождения частиц через обшивку модуля и рождение вторичных частиц

> Ионы ГКИ – красный Протоны – синий Нейтроны – жёлтый Гамма – зелёный Пи-мезоны – пурпурный

Приложения
Относительный вклад ядер первичных частиц ГКЛ

Несмотря на небольшую величину ТЗЧ по плотности потока, вклад в эффективную дозу от них значителен (без защиты).

Относительный вклад ядер первичных частиц ГКЛ (мин. СА) в общий флюенс и дозу

Дифференциальные энергетические спектры плотности потока ядер железа при взаимодействии равномерного пучка ядер железа с энергией 1 ГэВ/н с полиэтиленовой мишенью различной толщины

https://github.com/GordoNice

Pinned

📮 spek_qual Public

X-ray spectrum quality assessment

Python

FSEN4 Public

Python tools for FLUKA input files with Spawn, Execute and Notify features (FSEN). Allows to spawn FLUKA input files, execute them and notify by e-mail (or via telegram bot) about run state. After ...

🔵 Python 🔂 8 😽 1

Страница на GitHub

75

Ivan Gordeev