THE HYPERON POLARIZATION AND THE FORWARD-BACKWARD FLOW IN THE BI+BI COLLISIONS AT THE NICA ENERGIES

PHYS.REV.C 107 (2023) 3, PARTICLES 6 (2023) 1, ARXIV:2305.10792

NIKITA TSEGELNIK¹, EVGENI KOLOMEITSEV^{1,2} & VADIM VORONYUK³

¹ Laboratory of Theoretical Physics, JINR, Dubna, Russia
² Matej Bel University, Banska Bystrica, Slovakia
³ Laboratory of High Energy Physics, JINR, Dubna, Russia
tsegelnik@theor.jinr.ru

Global hyperon polarization on MPD 25 June 2024

1 Introduction

2 Prediction for the MPD@NICA program

- Centrality determination
- Hyperon spectra
- Hyperon polarization distributions
- Correlations between forward-backward flow and polarization

3 Conclusions

1 Introduction

2 Prediction for the MPD@NICA program

3 Conclusions

NON-CENTRAL HEAVY-ION COLLISIONS

Initial angular momentum of ions is partially transferred to the medium, what leads to the non-vanishing averaged *vorticity*:

- The vorticity field may have *intricate space structure*^{1,2}
- The vorticity is a source of the *global particle polarization*³

¹ vortex sheets (*M.I. Baznat, K.K. Gudima, A.S. Sorin, and O.V. Teryaev*, Phys. Rev. C 93 (2016))
² vortex rings (*Yu.B. Ivanov, A.A. Soldatov*, Phys. Rev. C 97 (2018); *Yu.B. Ivanov*, Phys. Rev. C 107 (2023))
³ F. Becattini, V. Chandra, L. Del Zanna, and E. Grossi, Annals Phys. 338 (2013); F. Becattini, M.A. Lisa, Annu. Rev. Nucl. Part. Sci. 70 (2020)

Global Λ and $ar{\Lambda}$ polarization and vorticity

- The Λ and Λ baryons are the *self-analyzing particles*: due to P-violation in weak decays, the angular distribution of final protons depends on the orientation of the Λ-hyperon spin
- In the hyperon *rest frame*, the decay product distribution is

$$\frac{\mathrm{d}N}{\mathrm{d}\cos\theta} = \frac{1}{2}(1 + \alpha_{\mathrm{H}}|\vec{\mathcal{P}}_{\mathrm{H}}|\cos\theta)$$
$$\alpha_{\Lambda} = -\alpha_{\bar{\Lambda}} = 0.732 \pm 0.014$$

• *Rough estimate* of vorticity (**STAR**):

$$\omega \approx \Big\langle \frac{k_B T}{\hbar} (\overline{\mathcal{P}}_{\Lambda} + \overline{\mathcal{P}}_{\bar{\Lambda}}) \Big\rangle_{\sqrt{s_{NN}}} \approx 10^{22} \, \mathrm{s}^{-1} \approx 6 \mathrm{MeV} / \hbar$$

The fastest-rotating fluid?

pulsar PSR J1748–2446ad	$\omega\sim 5\times 10^3{\rm s}^{-1}$
superfluid He II nanodroplets	$\omega \sim 10^7 {\rm s}^{-1}$

 \blacksquare The experimental data of the global Λ and $\bar{\Lambda}$ polarization

- The PHSD transport model as a heavy-ion collisions framework: *Kadanoff-Baym equations, DQPM, FRITIOF Lund, Chiral Symmetry Restoration, ...* W. Cassing, E.L. Bratkovskaya, Phys. Rev. C 78 (2008), Nucl. Phys. A 831 (2009)
- Transition from kinetic to hydrodynamic description via *fluidization* procedure:

$$\begin{split} T^{\mu\nu}(\boldsymbol{x},t) &= \frac{1}{\mathcal{N}} \sum_{a,i_a} \frac{p_{i_a}^{\mu}(t) \, p_{i_a}^{\nu}(t)}{p_{i_a}^{0}(t)} \Phi\left(\boldsymbol{x}, \boldsymbol{x}_{i_a}(t)\right), \qquad \qquad \mathcal{N} = \int \Phi\left(\boldsymbol{x}, \boldsymbol{x}_{i}(t)\right) \, d^3x, \\ J^{\mu}_{B}(\boldsymbol{x},t) &= \frac{1}{\mathcal{N}} \sum_{a,i_a} B_{i_a} \frac{p_{i_a}^{\mu}(t)}{p_{i_a}^{0}(t)} \Phi\left(\boldsymbol{x}, \boldsymbol{x}_{i_a}(t)\right), \qquad \qquad \Phi\left(\boldsymbol{x}, \boldsymbol{x}_{i}(t)\right) - \text{smearing function}, \\ u_{\mu}T^{\mu\nu} &= \boldsymbol{\varepsilon} \, u^{\nu}, \qquad n_{B} = u_{\mu}J^{\mu}_{B}, \qquad \longrightarrow \quad \text{EoS}^{1} \qquad \longrightarrow \quad \text{Temperature}(\boldsymbol{\varepsilon}, n_{B}) \end{split}$$

The fluidization criterion: fluidize only cells with ε ≥ ε_f ≈ 0.05 GeV/fm³!
Spectators separation: spectators do not interact and do not form fluid!

Hadron resonance gas: L.M. Satarov, M.N. Dmitriev, and I.N. Mishustin, Phys. Atom. Nucl. 72 (2009)

1 Introduction

2 Prediction for the MPD@NICA program

- Centrality determination
- Hyperon spectra
- Hyperon polarization distributions
- Correlations between forward-backward flow and polarization

3 Conclusions

CENTRALITY DETERMINATION

- We simulate $N_{\rm ev} \approx 2 \times 10^6$ collisions of Bi+Bi at $\sqrt{s_{NN}} = 9.0$ GeV.
- Then, we define a centrality class as a fraction of the cross section σ/σ_{tot} .
- Finally, we evaluate multiplicities with/without acceptance.

The minimum bias collisions approximately coincide with the 30-40% centrality class.

 $\frac{\text{multiplicity without cuts}}{\text{multiplicity with cuts}} \approx 2 \div 2.5$

■ Good agreement with the NA49 data¹. ¹PRL **94**, 192301 (2005); PRC **78**, 034918 (2008)

Hyperon spectra: $\frac{d^2N}{dy \, dp_T}$

• Good agreement with the STAR data¹.

 The blast-wave model for arbitrary velocity field of the fireball (*including flow effects*) is currently under development. The spectrum will be a benchmark for the model.

¹Au+Au collisions at $\sqrt{s_{NN}} = 7.7 - 11.5$ GeV with rapidity cut |y| < 0.5; *J. Adam et al.* Phys. Rev. C **102**, 034909 (2020).

Hyperon spectra: $\frac{dN}{dy}$

The thermodynamic approach

F. Becattini, V. Chandra, L. Del Zanna, E. Grossi, Annals Phys. **338** (2013)

Relativistic thermal vorticity:

$$\varpi_{\mu\nu} = \frac{1}{2} (\partial_{\nu}\beta_{\mu} - \partial_{\mu}\beta_{\nu}), \quad \beta_{\nu} = \frac{u_{\nu}}{T}$$

Spin vector:

$$\begin{split} S^{\mu}(x,p) &= -\frac{s(s+1)}{6m}(1\pm n(x,p))\varepsilon^{\mu\nu\lambda\delta}\varpi_{\nu\lambda}p_{\delta}\\ n(x,p) &= \text{distribution function, } s - \text{spin,}\\ m &= \text{mass, } p_{\delta} - 4 \text{ momentum of particle} \end{split}$$

Spin vector in the particle rest frame:

$$\mathbf{S}^* = \mathbf{S} - \frac{(\mathbf{S} \cdot \mathbf{p})\mathbf{p}}{E(E+m)}$$

Polarization:

$$\mathbf{P} = \mathbf{S}^* / s$$

Our algorithm:

- 1. At each time step we fluidize the system (*excluding spectators*) and calculate vorticity. *Medium*: $\varepsilon > \varepsilon_{\rm f} \approx 0.05 \, {\rm GeV/fm^3}$ and $\varpi_{\mu\nu} \neq 0$. *Out of medium*: $\varepsilon \le \varepsilon_{\rm f} \approx 0.05 \, {\rm GeV/fm^3}$ and $\varpi_{\mu\nu} = 0$.
- 2. After any collision (elastic or inelastic) particle is polarized by $\varpi_{\mu\nu}$. In out of medium the polarization is zero due to $\varpi_{\mu\nu} = 0$.
- 3. *Feed-down*:

Strong decays: $\Sigma^* \to \Lambda + \pi$, $\Xi^* \to \Xi + \pi$ are already taken into account in the PHSD dynamic $(C_{\Lambda\Sigma^*} = C_{\Xi\Xi^*} = 1/3)$.

 $\begin{array}{ll} \textit{EW decays:} \quad \Xi \to \Lambda + \pi, \quad \Sigma \to \Lambda + \gamma \\ \text{we consider by hand with } C_{\Lambda \Sigma^0} = -1/3, \\ C_{\Lambda \Xi^0} = 0.914, \text{ and } C_{\Lambda \Xi^0} = 0.943. \end{array}$

POLARIZATION MAP

- Plateau in midrapidity and small momentum homogeneous medium?
- Large fluctuations at high rapidities and momenta.
- Core-corona¹?
- Distributions for Ξ⁻ and Ξ⁰ (for Ξ⁺ and Ξ⁰) are almost identical.

¹A. Ayala, I. Domínguez, I. Maldonado, M.E. Tejeda-Yeomans, Λ and $\overline{\Lambda}$ global polarization from the core-corona model. Rev. Mex. Fis. Suppl. 2022, 3, 040914

POLARIZATION VS MOMENTUM

- Plateau at small momenta.
- Large fluctuations at high momenta.
- Similar behavior for different centrality classes.
- Cut by rapidity *increases* the polarization signal for hyperons, but *not for antihyperons*.

POLARIZATION VS RAPIDITY

- Plateau for central and hump for non-central collisions in midrapidity -(in)homogeneity or size of fireball?
- Polarization decreases at intermediate rapidities.
- Large fluctuations at high rapidities.
- Cut by momentum does not affect the global polarization!

POLARIZATION VS CENTRALITY

Polarization *increases* until the 60 - 70% centrality class and then *decreases* for all the hyperon species.

- Feed-down contribution *decreases* the total polarization of Λ and $\overline{\Lambda}$ by $\leq 30\%$. The contamination comes from Σ^0 and $\overline{\Sigma}^0$!
- We must consider the *feed-down procedure before cuts* by rapidity and momentum!
- Cuts increase polarization for hyperons, but not for antihyperons!

POLARIZATION AND CENTRALITY BINNING

	Λ		Λ+f.d.		$\overline{\Lambda}$		$\overline{\Lambda}$ +f.d.	
centrality	N	$P_y, \%$	N	$P_y, \%$	N	$P_y,\%$	N	$P_y, \%$
10 - 50%	6.76	1.60	10.13	1.09	0.23	2.43	0.43	1.62
10-60%	5.77	1.67	8.63	1.14	0.19	2.55	0.36	1.70
20-50%	5.20	1.86	7.73	1.28	0.17	2.98	0.32	1.99
20-60%	4.35	1.94	6.46	1.34	0.14	3.13	0.26	2.08
30-50%	4.18	2.08	6.19	1.43	0.13	3.50	0.25	2.32
30-60%	3.39	2.17	5.00	1.50	0.10	3.70	0.19	2.44
40 - 50%	3.28	2.25	4.84	1.56	0.10	3.99	0.18	2.63
40 - 60%	2.54	2.37	3.73	1.65	0.07	4.22	0.14	2.78

Narrowing the centrality bin we can increase the polarization signal, but it decreases the multiplicity! The most optimal binning is 30 - 50%!

It is better to use 20 - 50% than 10 - 60%, 30 - 50% than 20 - 60%, and 40 - 50% than 30 - 60% due to *approximately the same multiplicity but larger polarization!*

The polarization-flow correlations: "directed" flow for Λ

- Before drawing we reflect the polarization sign $P_y \rightarrow -P_y$ for clarity.
- The highest polarization corresponds to the particles moving in the same direction as the projectile (target), which are mostly born from the matter of the projectile (target)!
- We can increase the polarization signal by selecting particles by angle!

The polarization-flow correlations: "directed" flow for Λ

The polarization-flow correlations: "directed" flow for Λ

22

The polarization-flow correlations: "directed" flow for Ξ

The polarization-flow correlations: "elliptic" flow

22

1 Introduction

2 Prediction for the MPD@NICA program

3 Conclusions

- We simulated $N_{\rm ev} \approx 2 \times 10^6$ collisions of Bi+Bi at $\sqrt{s_{NN}} = 9.0$ GeV, determined centrality classes, and calculated hyperon multiplicities and spectra. There is a very good coincidence within the STAR and NA49 data.
- We analyzed the dependence of polarization on momentum and rapidity. There is no clear dependence for the transverse momentum, whereas we observed a plateau at medium rapidities and a decrease in polarization at higher rapidities. The particles more sensitive for the rapidity cuts than antiparticles.
- We analyzed different centrality binning. There are optimal ones between multiplicities and the global polarization.
- We found *correlations between "directed" flow and polarization*. There is no correlation for "elliptical" flow. *Selecting angle and* p_z , we can increase the polarization signal.

Thank You! Questions?