Correlation between P_v and v_1

- P_y(v₁) is difficult to use for correlation analysis
- Pearson correlation coefficient represent linear correlation between two sets of data from -1 to 1

$$egin{aligned} &
ho(X,Y) = rac{Cov(X,Y)}{Var(X)Var(Y)} \ &Cov(X,Y) = \langle XY
angle - \langle X
angle \langle Y
angle \ &Var(X) = \sqrt{\langle X^2
angle - \langle X
angle^2} \end{aligned}$$

 $P_{v}(y)$ and $v_{1}(y)$ dependence of Primary A

- Low signal for both observables
- Highest signal in mid-rapidity for P_v , where $v_1 \approx 0$

 $P_{v}(p_{T})$ and $v_{1}(p_{T})$ dependence of Primary A

- Low p_T dependence for P
- Better to investigate $p_T > 1.2$ GeV/c (change sign of v₁ around 1 GeV/c)

Pearson correlation coefficient as a function of centrality

$$egin{aligned} &
ho(P,v_1) = rac{\langle Pv_1
angle - \langle P
angle \langle v_1
angle}{(\sqrt{\langle v_1^2
angle - \langle v_1
angle^2})(\sqrt{\langle P^2
angle - \langle P
angle^2})} \ &
ho(P,v_1*N) = rac{
ho(P,v_1) -
ho(P,N)
ho(v_1,N)}{(\sqrt{1-
ho(P,N)^2})(\sqrt{1-
ho(v_1,N)^2})} \end{aligned}$$

N - multiplicity of Primary Λ

- Weak centrality dependence of Pearson correlation coefficient
- Effect of multiplicity of Primary Λ is negligible

Pearson correlation coefficient as a function of y and p_{T}

- increasing with p_{T}
 - highest for 0.5<y<1

Pearson correlation coefficient between P_v and v_1^2

Weak linear dependence between P_v and V_1^2

Pearson correlation coefficient between v_1 and P_v^2

 $ho(P^2,v_1)=rac{\langle P^2v_1
angle-\langle P^2
angle\langle v_1
angle}{(\sqrt{\langle v_1^2
angle-\langle v_1
angle^2})(\sqrt{\langle P^4
angle-\langle P^2
angle^2})}$

Weak linear dependence between P_v^2 and v_1