ПРОБЛЕМЫ СМЕЩЕНИЯ КВАДРУПОЛЬНЫХ ЛИНЗ НУКЛОТРОНА

А. В. Филиппов для ускорительного отделения ЛФВЭ

Семинар ЛФВЭ Секция физики и техники ускорителей, криогеники

Аннотация

В работе описан алгоритм, который по экспериментально измеренным положениям пучка в пучковой камере синхротрона позволяет сделать оценку о смещении квадрупольных линз от их идеального положения в кольце.

С помощью предложенного алгоритма по измеренным в ПНР-IV положениям пучка ядер ксенона-124 в пучковой камере Нуклотрона на энергиях инжекции и вывода сделана оценка смещений квадрупольных линз Нуклотрона.

Постановка задачи

Разработать алгоритм, который позволит по экспериментальным данным положения пучка в пучковой камере синхротрона сделать оценку о смещении квадрупольных линз от их идеального положения в кольце.

Используя полученные с помощью пикапов (далее — ПЭ) в ПНР-IV экспериментальные данные [1] положения пучка ядер ксенона-124 на энергии инжекции в Нуклотрон из Бустера и энергии вывода из Нуклотрона в корп. 205 сделать оценку смещения расставленных по кольцу Нуклотрона [2], [3] квадрупольных линз от их идеального положения.

Описание алгоритма

Пусть в горизонтальном направлении оси квадрупольных линз имеют смещения Δx_q , где q — номер линзы в магнитной структуре ускорителя. Будем считать, что смещения квадрупольных линз в кольце ускорителя распределены по нормальному закону $N(\mu, \sigma)$, со средним значением μ и среднеквадратичным отклонением σ (далее — СКР). В силу ограниченности выборки среднее смещение и СКР разброс смещений квадрупольных линз, близки к среднему и СКР разбросу, описывающего смещений квадрупольных линз нормальному распределению $N(\mu, \sigma)$, то есть $\Delta x \approx \mu$ и $\sigma_{\overline{\Lambda x}} \approx \sigma$.

Пусть в ускорителе существует возмущение замкнутой орбиты (далее — 30), вызванное заданием ведущего магнитного поля B_0 и смещением квадрупольных линз в его кольце.

Представим результирующую горизонтальную 30, обозначенную здесь как $x_{\Delta B/B_0 + \overline{\Delta x} + \sigma_{\overline{\Delta x}}} = x_{\Delta B/B_0 + \overline{\Delta x} + \sigma_{\overline{\Delta x}}}(s)$ в виде суммы: $x_{\Delta B/B_0 + \overline{\Delta x} + \sigma_{\overline{\Delta x}}}(s) = x_{\Delta B/B_0}(s) + x_{\overline{\Delta x}}(s) + x_{\sigma_{\overline{\Delta x}}}(s).$ (1)

Здесь *s* — продольная координата в ускорителе.

Дисперсионный член $x_{\Delta B/B_0} = x_{\Delta B/B_0}(s)$ в (1) связан с неточностью задания ведущего магнитного поля имеет вид:

$$x_{\Delta B/B_0}(s) = \frac{\Delta B}{B_0} D_x(s).$$
⁽²⁾

Здесь $\Delta B = B - B_0$, где $B - заданное ведущее магнитное поле, а <math>B_0 -$ согласованное с продольным импульсом пучка ведущее магнитное поле.

В выражении (1) член $x_{\overline{\Delta x}} = x_{\overline{\Delta x}}(s)$ связанный со средним смещением квадрупольных линз может быть представлен в виде:

$$x_{\overline{\Delta x}}(s) = (kD_x(s) + 1)\overline{\Delta x}.$$
 (3)

Здесь коэффициент k пропорциональности см. ниже.

Последний член в выражении (1) $x_{\sigma_{\overline{\Delta x}}} = x_{\sigma_{\overline{\Delta x}}}(s)$ связан со случайным смещением квадрупольных линз в кольце ускорителя распределённым по нормальному закону с нулевым средним $N(0, \sigma)$ и может быть записан в виде:

$$x_{\sigma_{\overline{\Delta x}}}(s) = F(s,\sigma). \tag{4}$$

Здесь функция *F*(*s*, *σ*) определяет искажение орбиты для случайной выборки по нормальному закону распределения смещений квадрупольных линз ускорителя.

Пусть набором ПЭ ускорителя вблизи предполагаемого ведущего магнитного поля *B*₀ производиться два последовательных изменения орбиты в горизонтальной плоскости:

$$x_{1,\Pi\Im} = x_{\Delta B_{10}/B_0 + \overline{\Delta x} + \sigma_{\overline{\Delta x}}}$$
 и $x_{2,\Pi\Im} = x_{\Delta B_{10}/B_0 + \overline{\Delta x} + \sigma_{\overline{\Delta x}}}$,
 $B_{10} = B_1 - B_0$ и $\Delta B_{20} = B_2 - B_0$. Далее считаем, что величи

где $\Delta B_{10} = B_1 - B_0$ и $\Delta B_{20} = B_2 - B_0$. Далее считаем, что величина $\Delta B = B_2 - B_1$ между двумя последовательно заданными величинами магнитного поля B_1 и B_2 нам известна. В зависимости от величины ведущего магнитного поля B_0 разность ΔB может быть не более десятков Гс, но такая, что $\Delta B \ll B_0$.

С учётом (1) усреднённая, по всем ПЭ, разность между двумя последовательными измерениями орбитами определяться как:

$$\overline{x_{2,\Pi\Im} - x_{1,\Pi\Im}} = \overline{x_{2,\Pi\Im}} - \overline{x_{1,\Pi\Im}} = \overline{x_{\Delta B_{20}}} - \overline{x_{\Delta B_{10}/B_0}} = \frac{\Delta B_{20}}{B_0} \overline{D_{x,2,\Pi\Im}} - \frac{\Delta B_{10}}{B_0} \overline{D_{x,1,\Pi\Im}} = \frac{\Delta B}{B_0} \overline{D_{x,\Pi\Im}}.$$
(5)

Связанные со смещением квадрупольных линз члены в (1) сократились в (5), так как оптика ускорителя одинакова в двух разных измерениях орбиты, поэтому в местах расположения ПЭ справедливо соотношение: $\overline{D_{x,\Pi \exists,1}} = \overline{D_{x,\Pi \exists,2}} = \overline{D_{x,\Pi \exists}}$.

Из (5) получаем выражение для определения согласованного с продольным импульсом пучка ведущего магнитного поля B_0 :

$$B_0 = \frac{\overline{D_{\chi,\Pi\bar{\vartheta}}}}{\overline{x_{2,\Pi\bar{\vartheta}}} - \overline{x_{1,\Pi\bar{\vartheta}}}} \Delta B.$$
(6)

Все величины в (6) нам известны: $\overline{x_{1,\Pi \Im}}$, $\overline{x_{2,\Pi \Im}}$ и ΔB известны из измерений, дисперсия $\overline{D_{x,\Pi \Im}}$ может быть измерена или взята из математической модели магнитной структуры ускорителя.

Пусть теперь у нас имеется какая-то измеренная орбита $x_1 = x_1(s)$ по типу (1), тогда величина $x_1 - x_{\Delta B/B_0}$ определит орбиту $x_2 = x_2(s)$ вызванную лишь смещением квадрупольных линз ускорителя с учётом (1) равную $x_2(s) = x_1(s) - x_{\Delta B/B_0}(s)$ или:

$$x_2(s) = x_1(s) - \frac{\Delta B}{B_0} D_x(s) = x_{\overline{\Delta x}}(s) + x_{\sigma_{\overline{\Delta x}}}(s).$$
(7)

В выражении (7) $\Delta B = B - B_0$, где B — магнитное поле, при котором произведено измерение орбиты x_1 , а согласованная с продольным импульсом пучка величина ведущего магнитного поля B_0 нам известна см. (6).

Усредняя (7) по всем ПЭ орбиту *x*₂ получим:

$$\overline{x_2} = \overline{x_1 - x_{\Delta B/B_0}} = \overline{x_{\overline{\Delta x}}} + \overline{x_{\sigma_{\overline{\Delta x}}}} = \frac{1}{(kD_x(s) + 1)\overline{\Delta x}} + \overline{F(s,\sigma)} = (k\overline{D_x} + 1)\overline{\Delta x} + \overline{F(\sigma_{\overline{\Delta x}})}.$$
(8)

Далее рассмотрим три случая в выражении (8).

Первый случай:

$$(k\overline{D_x}+1)\overline{\Delta x} \gg \overline{F(\sigma_{\overline{\Delta x}})}.$$
 (9)

Тогда в выражение (7) членом $x_{\sigma_{\Delta x}}(s)$ можно пренебречь и в этом случае среднее смещение квадрупольных линз определяется как:

$$\overline{\Delta x} = \frac{\overline{x_2}}{k\overline{D_x} + 1}.$$
(10)

Далее, мы можем определить орбиту $x_3 = x_3(s)$ равную:

$$x_3(s) = x_2(s) - (kD_x(s) + 1)\overline{\Delta x}.$$
 (11)

Здесь Δx определяется выражением (10). Орбита x_3 (11) полностью связана с функцией $F(s, \sigma)$, которая определяет искажение орбиты для случайной выборки по заданному закону распределения смещений квадрупольных линз ускорителя. Далее проводя моделирование огибающих 30 пучка в МАD-Х [4] с помощью математической модели ускорителя можно определить для орбиты (11) СКР разброс смещений квадрупольных линз $\sigma_{\overline{\Lambda x}}$.

Второй случай:

$$(k\overline{D_x}+1)\overline{\Delta x} \ll \overline{F(\sigma_{\overline{\Delta x}})}.$$
 (12)

Тогда в выражение (7) член $x_{\overline{\Delta x}}(s)$ мал, то есть $\overline{\Delta x} \approx 0$. И проводя, с помощью математической модели ускорителя, моделирование огибающих 30 пучка в MAD-X [4] можно определить СКР разброс смещений квадрупольных линз $\sigma_{\overline{\Delta x}}$.

Третий случай:

$$(k\overline{D_x}+1)\overline{\Delta x} \approx \overline{F(\sigma_{\overline{\Delta x}})},$$
 (13)

то есть члены $x_{\overline{\Delta x}}(s)$ и $x_{\sigma_{\overline{\Delta x}}}(s)$ сравнимы в (7), и поэтому нет возможности разделить вклады подобно тому, как это сделано в первых двух случаях. Однако, проводя моделирования огибающих 30 пучка в MAD-X [4] можно также определить среднее $\overline{\Delta x}$ и СКР разброс $\sigma_{\overline{\Delta x}}$ смещений квадрупольных линз.

Математическая модель Нуклотрона

Разработанная с помощью MAD-X [4] математическая модель Нуклотрона учитывает:

- Расстановку дипольных магнитов в кольце [5], измеренные при криогенных температурах нелинейностей магнитных полей дипольных магнитов [6] в диапазоне токов 640÷6400 А.
- Расстановку квадрупольных магнитов в кольце [5]. Измеренные при комнатной температуре нелинейностей магнитных полей квадрупольных магнитов [7].

Данные для линз [5] и [7] являются фрагментарными для разных линз (ярм), токов (при которых проведено измерение) и гармоник.

Математическая модель Нуклотрона (продлж.)

Фрагментарные данные [7] магнитных измерений нелинейностей магнитного поля квадрупольных магнитов были использованы для построения эмпирического распределения [8] — естественного приближения функции распределения случайной величины (каждой из гармоник), построенное по её выборке данных [7]. Найденное, таким образом, эмпирическое распределение использовалось для построения полного набора нелинейностей магнитных полей квадрупольных магнитов, установленных в кольце Нуклотрона. Математическая модель Нуклотрона создана для измеренной рабочей точки $Q_{\chi}/Q_{\gamma}~=7,41/7,45$ [2], [3]. Для этой рабочей точки была проведены оценки смещений линз.

Измеренные орбиты в Нуклотроне

Измерения орбиты проводились с помощью 24 ПЭ расположенных в кольце Нуклотрона см. Рис. 1, из которых, — 18 расположены возле дефокусирующих линз (Д-линз), 6 — возле фокусирующих линз (Ф-линз). Причём З ПЭ расположены в местах, где имеется большая и положительная горизонтальная дисперсия ($D_{x} > 3,9$ м), 8 — где имеется отрицательная горизонтальная дисперсия (-1,6 < $D_{\gamma} < -1,2$ м), остальные 13 ПЭ расположены в местах, где горизонтальная дисперсия имеет величину вблизи нуля (0,5 < $D_{\gamma} < 0,7$ м).

Измеренные орбиты в Нуклотроне (продлж.)

Рис. 1. Схематичное расположение ПЭ в кольце Нуклотрона и горизонтальная дисперсия Нуклотрона

Измеренные орбиты в Нуклотроне (продлж.)

Табл. Статистика измеренных сигналов горизонтального положения пучка с ПЭ Нуклотрона [1]

Параметр	На инжекции	На выводе
Среднее значение, мм	-3,4	-2,7
СКР отклонение, мм	7,2	11,8
Минимум, мм	-21,4	-42,9
Максимум, мм	7,8	13,7

Результаты и выводы

Семинар ЛФВЭ Секция физики и техники ускорителей, криогеники

Результаты и выводы (продлж.)

Семинар ЛФВЭ Секция физики и техники ускорителей, криогеники

Результаты и выводы (продлж.)

Таким образом, мы можем заключить, что измеренные горизонтальные точки $x_{\Pi \exists}$ распределены по нормальному закону с нулевым средним и СКР отклонением 4 мм на инжекции и 5 мм на выводе. Видно, что эти оценки близки. Поэтому, смещение квадрупольных линз в Нуклотроне может быть около 4÷5 мм.

Предлагаемый алгоритм может быть использован в будущих сеансах на Бустере и Нуклотроне для определения согласованного с продольным импульсом пучка ведущего магнитного поля.

Литература

- [1] Данные предоставлены Е. В. Горбачёвым и В. Л. Смирновым
- [2] Иссинский И. Б., Бровко О. И., Бутенко А. В. Эксперименты по исследованию потерь интенсивности пучка Нуклотрона (2002-2005 гг.). Сообщение ОИЯИ Р9-2007-107. Дубна, 2007. 15 с.
- [3] <u>Смирнов А. А. Нуклотрон новая технология сверхпроводящей</u> магнитной системы синхротрона // ЭЧАЯ. 2001. т. 32, вып. 1. С. <u>96-142</u>
- [4] <u>http://madx.web.cern.ch/madx/</u>

Литература (продлж.)

[5] Таблицы расстановки из архива Г. Г. Ходжибагияна

- [6] <u>Донягин А. М., Коваленко А. Д., Козлов О. С., Михайлов В. А.,</u> <u>Смирнов А. А. Анализ результатов магнитных измерений</u> <u>дипольных и квадрупольных магнитов Нуклотрона. Сообщение</u> <u>ОИЯИ Р9-94-329. Дубна, 1994</u>
- [7] Измеренные нелинейности магнитного поля дипольных и квадрупольных магнитов Нуклотрона предоставлены
 А. М. Донягиным

[8] <u>https://en.wikipedia.org/wiki/Empirical_distribution_function</u>