

Status of the BM@N experiment

M.Kapishin

Baryonic Matter at Nuclotron (BM@N) Collaboration:

5 Countries, 13 Institutions, 214 participants

- University of Plovdiv, Bulgaria
- St.Petersburg University
- Shanghai Institute of Nuclear and Applied Physics, CFS, China;
- Joint Institute for Nuclear Research;
- Institute of Nuclear Research RAS, Moscow
- NRC Kurchatov Institute, Moscow combined with Institute of Theoretical & Experimental Physics, NRC KI, Moscow

- Moscow Engineer and Physics Institute
- Skobeltsyn Institute of Nuclear Physics, MSU, Russia
- Moscow Institute of Physics and Technics
- Lebedev Physics Institute of RAS, Moscow
- Institute of Physics and Technology, Almaty
- Physical-Technical Institute
 Uzbekistan Academy of Sciences, Tashkent
- High School of Economics, National Research University, Moscow

BM@N papers, preliminary results, conferences

The BM@N spectrometer at the NICA-Nuclotron facility The BM@N detector paper for the Xe+CsI run configuration, published in NIM A, NIMA 1065 (2024) 169532, arxiv:2312.17573

Production of *p, d, t* in 3.2 AGeV argon-nucleus interactions at the Nuclotron, BM@N preliminary, extension of the paper draft

Directed flow v1 of protons in the Xe+CsI collisions at 3.8 AGeV, BM@N preliminary

BM@N presented / submitted physics and detector talks at conferences:

Conference Nucleus-2024, Dubna, July 2024 Conference "Hadron Structure and Fundamental Interactions" - HSFI'2024, Gatchina, July 2024 Conference ICPPA-2024, Moscow, October 22-25

BM@N paper draft: Production of *p, d, t* in 3.2 AGey argon-nucleus interactions at the Nuclotron

Extended draft in preparation

L.Kovachev -> talk at NUCLEUS-2024, Dubna

 $y^* = y_{lab} - y_{CM}, y_{CM} \approx \langle y(\pi) \rangle$ Ar+C: $\langle y(\pi) \rangle = 1.27$ Ar+Pb: $\langle y(\pi) \rangle = 0.82$

- dN/dy spectrum softer in interactions with heavier target
- DCM-SMM and PHQMD models describe data shape, but are lower in normalization by factor 4

BM@N experiment

M.Kapishin

Collective flow of protons in Xe+Csl interactions

\rightarrow Status BM@N Preliminary

Azimuthal angle distribution: $dN/d\phi \propto (1 + 2v_1 \cos \phi + 2v_2 \cos 2\phi)$

→ Direct flow of protons as a function of rapidity, transverse momentum; compared with the JAM model → BM@@N result is in line with the energy dependence of the world data

MEPhI group M.Mamaev \rightarrow talk at NUCLEUS-2024, Dubna

Λ and K⁰_s production in Xe+CsI interactions

Rapidity distribution of Λ and ${\rm K^0}_{\rm s}$ compared with DCM-SMM model

Transverse mass distribution of Λ and K_{s}^{0}

Still it is not official BM@N result

Search for ${}_{\Lambda}H^3$, ${}_{\Lambda}H^4$, $\phi \rightarrow K+K-$ in Xe+CsI interactions

Analysis of 300M events

S.Merts, R.Barak

Study of neutron emission from target spectators in ¹²⁴Xe + CsI collisions at 3.8 A GeV

1000

100

10

 $d^2\sigma/dEd\Omega$, mb MeV⁻¹ sr⁻¹

Trigger group N.Lashmanov→ talk at NUCLEUS-2024, Dubna Request of BM@N Preliminary

BM@N

Fit neutron spectra with three moving source model (MSM fit): hard, fragmentation, evaporation

Compare spectra with DCM-SMM model

Simulation of trigger efficiency in Xe+CsI run

Current activities and tasks for the Xe data analysis

- Good agreement between data and reconstructed Λ and K⁰_S simulation (A.Zinchenko, V.Vasendina, J.Drnoyan)
- Identification of charged particles in ToF-400 and ToF-700 (M.Rumyantsev, I.Zhavoronkova, S.Merts, N.Huhaeva, V.Plotnikov)
- \rightarrow ToF-700 hit reconstruction and alignment is not finished yet
- Search for signals of light hyper-nuclei ${}_{\Lambda}H^3$, ${}_{\Lambda}H^4$ and Φ -meson (S.Merts, R.Barak)
- Analysis of v1 and v2 flows for protons and Λ, centrality measurement based on track multiplicity (MEPhI group)
- \rightarrow Still, centrality measurement in fragment hodoscope and hadron calorimeter is not done yet (INR RAS group)
- \rightarrow Need to compare results of two methods
- \rightarrow Need to evaluate trigger efficiency in data for different centrality classes
- Topics of physics analyses:
- analysis of production of Λ hyperons, K⁰_S, K±, π±, Φ mesons, light nuclear fragments and neutrons in Xe+CsI interactions;
- analysis of collective flow of protons, $\pi \pm$, Λ , light nuclear fragments
- femtoscopy of $\pi \pm$, protons, light nuclear fragments
- Analysis of light hyper-nuclei $_{\Lambda}H^3$, $_{\Lambda}H^4$

2-coordinate Si-plane based on STS modules

STS group

A new Si-plane based on STS modules to be installed between the Target and Forward Si-Tracker

Motivation: to improve track and momentum resolution for the low-momentum particles

Plan to install and commission the new Si plane for the next experimental run

High Granularity Neutron detector

INR RAS, JINR, NRC Kurchatov \rightarrow plan to construct in 2025

HGN detector parameters: 2 sub-detectors with 8 layers each (~1.5 λ_{int})

- 11 x 11 cells in one layer with SiPM read-out
- first layer works as VETO
- next 7 layers: 3cm Cu + 2.5cm scintillator
- FPGA based fast TDC read-out with additional ToT amplitude measurement
- time resolution of one scint. cell ~ 120ps
- neutron detection efficiency: > 60% @ 1GeV

M.Kapishin

BM@N experiment

Plans for BM@N upgrade and physics runs

Physics run with the Xe beam in 2025

- \rightarrow beam energy scan in the range of 2-3 AGeV
- \rightarrow same central tracker configuration based on silicon FSD and GEM detectors,
- \rightarrow additional 1st vertex plane of silicon STS detectors
- \rightarrow complete replacement of outer drift chambers with cathode strip chambers
- \rightarrow additional ToF-400 modules to extend acceptance by factor 1.5

Preparations for the physics run with the Bi beam

- further development of the central tracker is foreseen: installation of additional station of silicon FSD detectors
- It is planned to put into operation a 2-coordinate (X/Y) neutron detector of high granularity to measure neutron yields and collective flow

Thank you for attention!

M.Kapishin

Λ and K⁰_s production in Xe+CsI interactions

A.Zinchenko \rightarrow talk at NUCLEUS-2024, Dubna

Life time is in agreement with PDG values: 0.2632 ns for Λ , 0.0895 ns for K⁰_s

Centrality selection from fits of the track multiplicity

Γ-fit and MC-Glauber fit are in agreement

MEPhl group

- Parametrization of data track multiplicity N_{ch} by MC Glauber model or Negative Binominal Distribution (Γ-fit) with free parameters
- Extract P(b | N_{ch})
- Still need to correct for trigger efficiency, changes in central tracker (FST, GEM) efficiency

Xe+Csl data: π±, K±, p, He3, d, t identification

Total β vs rigidity

ToF-700, S.Merts

Production of *p, d, t* in 3.2 AGeV argon-nucleus interactions

BM@N

Deuterons: <m_t> dependence on y

- Maximum <m_t> at mid-rapidity y*
- PHQMD model is in better agreement with data at mid-rapidity than DCM-SMM