

Status and plans of R&D for Si-detectors on BM@N

N. Zamyatin on behalf of Forward Silicon Detector team

13th Collaboration Meeting of BM@N experiment, 8-10 October 2024

R&D for Si-detectors on BM@N

1. Design of new Si-station #5 for FSD:

- two planes with 11pcs of Si-modules;
- active area of Si-modules (186×63)mm²;
- Number of FEE-channels (strips) of station 128×10×22=28 160 ch;
- Contract # 100-03046 (26.07.2024), ZNTC-JINR for production 50 pcs of DSSD and 60 pcs of PA-640.

2. Design of ASIC-128 ch chip (ASi-BM@N) for FEE station#5 FSD:

- design and simulation of chip (2022-2023 years);

- GDS files for production experimental chips;

- Contract # 100-03185 (06.08.2024), INP BSU (Minsk) - JINR for production 3 wafers/2000 chips – in 2024-2025 years;

3. Design of new beam profilometer for heavy ions Xe(10.8 pC/175 μ m-Si), Au (20.9 pC/175 μ m-Si), Bi) with high dynamic range of Δ E-signals (240÷500 MeV/175 μ m-Si).

4. Experimental measurements of neutrons equivalent fluence (1 MeV) in FSD region (on outer surface beam-pipe and in region FEE-chips)

1. Position of the new FSD-station #5 on the BM@N

X-Z cross section of central tracker

Three type of Si-modules for Forward Si detector

Detectors size: $63x93x0,3 \text{ mm}^3$ (on 6" – FZ-Si-n wafers) Topology: double sided microstrip (DSSD) (DC coupling) Pitch p⁺ strips: 95 µm; Pitch n⁺ strips 107,1 µm; Stereo angle between p⁺/n⁺ strips: 2.5⁰ Number of strips/DSSD: 640 (p⁺)×603(n⁺) Number of strips/module: 640 (p⁺)×640(n⁺) Detectors size: 63x63x0,3 mm³ (on 4" – FZ-Si-n wafers) Topology: double sided microstrip (DSSD) (DC coupling) Pitch p⁺ strips: 95 μm; Pitch n⁺ strips 103 μm; Stereo angle between p⁺/n⁺ strips: 2.5⁰ Number of strips/DSSD: 640 (p⁺)×614(n⁺) Number of strips/module: 640 (p⁺)×640(n⁺)

2. Main parameters and block scheme of ASIC-128 ch/ASi-BM@N

Параметры детектора					
Тип детектора	Кремниевый, стриповый,				
	двухсторонний				
Толщина кремниевого детектора	(200÷500) мкм				
Сигнал детектора, m.i.p.	4 фКл/300 мкм				
Напряжение смещения, В	До 100 В				
Емкость стрипа, пФ	20÷100				
Параметры ИС					
Технология	СМОЅ, 180нм				
Количество каналов	128				
Напряжение питания, В	1.8 (однополярное)				
Ток потребления аналоговых	115				
блоков, мА	115				
Ток потребления цифровых блоков,	12				
мА	12				
Рассеиваемая мощность, мВт	229				
	ЗЧУ+Формирователь+СВХ+Мультип				
	лексор				
Защита по входам	Контактные площадки с защитными				
защита по входам	диодами				
Компенсация токов утечки	До 5 нА, автоматическая,				
······································	отключаемая				
	Нечетных и четных через				
Тестирование	встроенные конденсаторы				
	ёмкостью 0.05 пФ				
Тестовый канал	Контроль формы и амплитуды				
	выходного				
Время формирования, нс	300 и 200				
Порядок формирователя	4				
Линейный диапазон входных	+/-30				
зарядов, фК	,				
Коэффициент преобразования	20				
аналогового выхода, мкА/фКл					
ENC (r.m.s.), e	215е+11.6 е/пФ				
Мультиплексор	128:1				
Частота чтения данных, МГц	20				
Выход мультиплексора	Токовый, дифференциальный				
Цифровые сигналы управления	LVDS				

Переключатели:

1) Время формирования: «1» - 300 нс, «0» - 200 нс

2) Полярность сигнала: «1» - минус , «0» - плюс

3) Автоматическая компенсация токов утечки: «1» - включение

4) Автоматическая фиксация постоянного уровня формирователя: «1» - включение

3. New beam profilometer for heavy ions (Xe, Au, Bi) with Si-detector (64×64) strips

Beam profilometer inside beam vacuum station

Beam profilometer standalone DAQ

New readout electronics for beam profilometer

Beam profilometer is necessary for beam tuning in self trigger mode (alignment of the center beam with the center of the target)

- **detector:** DSSD, $(128p^+ \times 128n^+)$, strips pitch = 475 µm, thickness (Si) -175 µm, active area (61 × 61) mm². Strips are combined in pairs on detector board. Total have $(64p^+ \times 64n^+)$, pitch = 950 µm
- **mechanical design:** the plane of the profilometer is automatically removed from the beam zone to the parking position
- FEE based on two VA32HDR11 ASICs. Total number of channels are 64 for X and 64 for Y coordinate. Dynamic range of signals: $-35pC \div$ +25pC. Charge of ionization for heavy ions Xe(10.8 pC/175 µm-Si), Au (20.9 pC/175 µm-Si), Bi) corresponded of Δ E-signals (240÷500 MeV/175 µm-Si).

Peaking time 800 ns.

Self trigger mode based on TA32cg2 ASICs

• current status:

FEE have been designed, manufactured, work in progress to electronics tests.

Next step is testing FEE with Si detector placed in flanges with alpha-source (5.5 MeV) and standalone DAQ subsystem.

4. Radiation Si-monitors on FSD region for equivalent neutron fluence measurement

- Si- pin-detector (rad_monitor) :
- Detectors size: (5×5×0,3) mm³
- Detectors thickness: 300 µm
- Active area: 13 mm²

 $\Delta I = \alpha_I \times V \times \Phi$

- $\Delta \mathbf{I} = \mathbf{I}_{\phi} \mathbf{I}_{0}, \ (\mathbf{A}):$
- I_{ϕ} dark current after irradiation;
- **I**₀ dark current before irradiation;
- $\alpha_{I} = (5\pm0,5)\cdot10^{-17} (A\times cm^{-1})$ - radiation damage constant-Si (for neutrons 1MeV at +20°);
- V, (cm³) volume of SCR (spice charge region at U_{fd});
- Φ, (cm⁻²) eq. neutron fluence (1 MeV)

Приложение-1: (девять следующих слайдов)

FSD: after replacing

E.V. Martovitsky; D.D. Chemezov

FEE board replacing

Yu.A. Kopylov; O.G. Tarasov

To eliminate the dead zones it was necessary to assemble a new FEE board completely, 5 ASICs were spent to eliminate each of defects. The old boards were disconnected from the modules and replaced with a new ones. Total: 9 new black boards (p+ strips) were built, 45 VATAGP 7.2 ASICs were used (30 spare ASICs available).

Y-Z cross section of central tracker

GEM tracking system

Position of double-coordinate Si-detectors relative to the axis of the ion guide

Beam directions

*Distance between the flange surface and the detector surface. Detector rotation in the coordinate plane no more than 0.5^o

Beam tracker detector center coordinates relative to the ion guide axis (mm)

#	Х	Y	Z*
#1	0.0	0.9	94.7
#2	2.7	-0.3	96.9
#3 (AI)	0.4	0.1	94.9

Strip pitch in the detector: 0.45 mm Number of strips: 128x128 Thickness: 175 μm Size: 63 x 63 mm²

Beam profilometer detector center coordinates relative to the ion guide axis (mm)

#	х	Y	Z*
#1 (electric)	-1.3±0.1	0.7±0.1	99.7
#2 (pneumatic)	-2.7±0.5	1.4±0.2	100.7

Strip pitch in the detector: 1.87 mm Number of strips : 32x32 Thickness: 175 μ m Size: 60 x 60 mm²

New beam profilometer (64×64) strips for heavy ions (Xe, Au, Bi)

На рис. результаты тестов-2022 с альфа источником Si – профилометра: - такую же картину мы хотели получить при работе с пучком, но не удалось из-за наложений при «медленной» электронике (ИС-VA163);

 оба профилометра были убраны в положение «парковка» и не использовались в сеансе;
наши планы и действия – ведется новая разработка (С.Хабаров+О.Тарасов) конструкции плоскости детектора (128х128) стрипов превращаем в (64х64) стрипа + новая FEE на основе ИС HDR64/VA, чипы есть в наличии, детекторные платы разработаны, изготовлены и готовы к сборке детекторов, FEE-PCB в разработке (С.Хабаров), детекторы есть и тестируются (Е.Стрелецкая+Ю.Копылов), готовность – осень_23.

- detector: DSSD, (32p⁺×32n⁺), strips pitch = 1.8 mm, thickness (Si) -175 μm, active area (60 × 60) mm²;
- **mechanical design:** the plane of the profilometer is automatically removed from the beam zone to the parking position;
- FEE: for light (₆C ÷ ₁₈Ar) ions based on VA163 + TA32cg2 (32 ch, dynamic range (DR): -750fC ÷ +750fC) desing in progress;
- current status:

- two vacuum stations with flanges and cable connectors are ready, Silicon Detectors assembled on PCBs and tested with alpha-source (5.5 MeV), autonomus (ADC+DAQ) subsystem ready;

- for heavy (Kr \div Au) ions will be developed another version of the FEE with DR = ± 20 pC.

Токи детекторов BT(1÷3) в начале сеанса и по окончании сеанса:

- «подложка» это темновой ток, создаваемый радиационными дефектами ионов Хе;
- быстрая импульсная компонента это ток ионизации в течение спилов.

Рис.5. Схема измерений (а) темнового тока двухстороннего стрипового Siдетектора и ВАХ (б) до и после сеанса.

Формула определения эквивалентного 1МэВ флюенса нейтронов по повреждениям кремния $\Delta I = \alpha_1 \cdot \Phi \cdot V$ где: α_1 – токовая константа повреждений кремния равняется 5×10⁻¹⁷ A/см, при +20°C для нейтронов с энергией 1 МэВ и физически означает приращение тока в кремниевом детекторе объемом 1см³ от прохождения одного нейтрона (1 МэВ), Φ ,см⁻² – флюенс нейтронов, V, см³ – объем детектора.

LHEP		1		BM@N
ЛФВЭ	I _{d0} , мкА/+20 B/+22.5°C	l _{d(ф)} , мкА/+20 B/+26.8°C		$\Delta I = Id(\varphi) - Id0 = \alpha I \cdot \varphi \cdot V,$
	(04.12.2022 начало сеанса)	(2.02.2023 окончание сеанса)		мка (приведённое к +20 °C)
BT1	0.965	12.7		4.76
BT2	0.692	12.5		4.6
BT3	0.626	12.9		4.93
	Эквивалентный флк нейтронов 1 МэВ, с (измерен по радиацио повреждениям Si)	Dенс :M ⁻² нным	Флюенс ¹²⁸ Хе, см ⁻ расчет через NIEL <i>К(¹²⁸Хе/нейтрон</i> 1МэВ)=276	² Число ядер ¹²⁸ Хе, прошедших за сеанс через Si-детекторы BT(1÷3), S _a =37 см ²
BT1	5.117e+12		1.854e+10	6.899e+11
BT2	4.945e+12		1.792e+10	6.667e+11
BT3	5.300e+12 1.92		1.920e+10	7.145e+11
6				