

Status of the first Si-plane based on STS modules

Sheremetev Aleksei for STS team JINR LHEP

13th Collaboration Meeting of the BM@N Experiment at NICA 08 – 10 October 2024

Mechanics

D. Andreev, I. Gorelicov, A.Voronin, A.Panfilov, A. Sheremetev

In-beam tests of the DSSD-modules

D. Dementev, M. Shitenkov, R. A. Díaz, A. Kolozhvari, V. Leontyev, A. R. Alvarez

DAQ integration

D. Dementev, M. Shitenkov, R. A. Díaz, A. Kolozhvari, I.Filipov

DCS system

A. R. Alvarez, I. Osokin

Timelines

Size of the sensor: 62×62 mm²;

Pitch: 58 µm, 7.5° stereo-angle;

Thickness of the sensor: 320 µm ±15 µm;

Total number of channels: 12.288 channels;

Si-station consist of 6 STS modules

Distance from the Target ~ 70 mm

STS station based on STS modules

The STS station in open position

Half part of the STS station

Mechanical integration of STS and FSD station

Top and Bottom parts of the **carrier plate** have to be redesigned to carry FSD and STS;

Cross section of STS + FSD stations inside magnet

Alignments of half STS station

Each Half-Station:

- Has 8 alignment marks;
- 3 DoF (x, y, φ) can be adjusted;

Alignment marks

y - position alignment screw

φ - position alignment screw

13th Collaboration Meeting of the BM@N Experiment at NICA

Construction of the STS station

Light part of STS station

FR4 frame of DSSD-detectors

Production of light Carbon-Fiber cage for

the DSSD-detectors

Carbon-Fiber cage: 600 µm prepreg + 20 µm graphite paper

Alignment holes

Aluminum frame of cover shielding part for Si-sensors

Results of the in-beam tests of the DSSD-modules at PNPI

Beam telescope:

- 3 layers of MAPS;
- 6 STS modules;
- 2 scintillators (trigger)

Was tested with **1 GeV proton** beams

Results of the in-beam tests:

- 1. Data streams from two subsystems (MAPS & DSSD) were successfully merged into events based on the trigger signal.
- 2. Concept of the integration of the free-streaming STS readout into the trigger-based DAQ was proven.
- 3. The following parameters of DSSD modules were measured:
 - Signal- to- Noise ratio: >21;
 - Av. spatial resolution: 15.4 µm;
 - Time resolution: 9.9 ns;
 - Efficiency: >99%
- 4. Dependency of the module parameters on the detector bias voltage and ADC threshold was studied

Results of the in-beam tests of the DSSD-modules at PNPI

Hit timestamps with respect to the trigger timestamp (after corrections)

Time resolution of the system is 0.79 ts (9.9 ns)

Signal-to-Noise distributions for the p-,n- and z-(with second metallization layer) strips for the 1 GeV protons

D. Dementev, M. Shitenkov

Results of the in-beam tests of the DSSD-modules at PNPI

Selected operation values:

- Detector bias voltage: 80-100 V
- ADC Threshold: ~ 1 fC

D. Dementev, M. Shitenkov

DAQ of the STS subsystem of BMN experiment

A. Kolozhvari, I.Filipov 12

Control parameters

- LV and HV power supply (individual for each module)
- 6 thermal sensors (PT1000);
- 2 humidity sensors (HIH-4000);
- UPS status
- Chiller status
- Water flow

Thanks to E. Martovitsky, S.Novogilov & S. Piyadin for the installation of the STS rack

Half Station

Half Station

A. R. Alvarez, I. Osokin

Conclusion & Timelines

- The DSSD modules for the STS station were tested with the proton beams in Gatchina;
- Mechanics for the STS station was produced and tested;
- CF cage for the light part of the station has to be finalized;
- The design of the carrier plate for FSD and STS is in progress;
- DAQ integration is almost finished and was tested in local network;
- Power system (crate, cables, PoB) have been tested and ready for assembly to station.

Project timelines:

October 2024: In lab test ongoing

October 2024: Production of carrier plate for FSD and STS.

End of November 2024: Installation, tuning and commissioning of STS station

DSSD Module

Module ID	Size of	Cable length	Nb. of not-
	sensor		operable ch.
B033	62	155	26
B011	62	117	14
B008	62	117	10
B009	62	117	7
B032	62	155	56
B034	62	155	23

Sheremetiev@jinr.ru