
Activities and workplans of the MIPT Group for
development of BM@N software systems

Peter Klimai < pklimai@gmail.com >

the MIPT team for the BM@N collaboration

13th Collaboration Meeting of the BM@N Experiment at the NICA Facility, 8-10 Oct 2024

mailto:olyanemova36@gmail.com

MIPT Software for BM@N – Team

Supervision: T. A.-Kh. Aushev
Team members:

• P. Klimai

• A. Nozik

• O. Nemova (student 6y)

• I. Dunaev (student 6y)

• V. Kaplenko (student 6y)

• A. Degtyarev (PhD st. 2y)

• S. Efimov (graduated)

2

Main Projects Summary

3

Project URL

Event Metadata System https://git.jinr.ru/nica_db/emd
https://git.jinr.ru/pklimai/ems-stat-collector
https://git.jinr.ru/pklimai/ems-deploy

Next-generation Event Display https://git.jinr.ru/idunaev/visionforge
https://git.jinr.ru/pklimai/visapi

Monitoring Service https://git.jinr.ru/pklimai/mon-service-deploy

Development of REST API and Web interfaces for slow
control system

https://git.jinr.ru/pklimai/architect
https://git.jinr.ru/pklimai/tango-api

https://git.jinr.ru/nica_db/emd
https://git.jinr.ru/pklimai/ems-stat-collector
https://git.jinr.ru/pklimai/ems-deploy
https://git.jinr.ru/idunaev/visionforge
https://git.jinr.ru/pklimai/visapi
https://git.jinr.ru/pklimai/mon-service-deploy
https://git.jinr.ru/pklimai/architect
https://git.jinr.ru/pklimai/tango-api

Development of REST API and Web
interfaces for slow control system

4

BM@N slow control system database

• Updated version of Tango slow control database uses PostgreSQL

• Convenient REST API access is required

5

API Service Development

• “Architect” service was developed by
Sergey Efimov
• Creates a skeleton for API service

• Used technologies: Go, Docker, GitLab CI

• Supported API types: REST and gRPC

• https://gitlab.com/zigal0/architect

• Actual TANGO API microservice
• https://gitlab.com/zigal0-group/nica/tango-api

• Considering to use this approach for other
services as well

6

https://gitlab.com/zigal0/architect
https://gitlab.com/zigal0-group/nica/tango-api

• http(s)://<host>:7000/tango-api/v1/parameter?system_name=bmn¶meter_name=temperature&
member_name=pir230e_1&start_time=2021-11-26&end_time=2021-11-27

7

REST API call example

8

OpenAPI / Swagger page

• In addition to API, a Web-based viewer for SCS is being developed

• Old SCS system viewer developed previously (BM@N Runs 1-7) is shown:

9

Work in progress

Event Metadata System
(an update)

10

BM@N Event Metadata System

11

For more details:

E. Alexandrov, I. Alexandrov, A. Chebotov,

A. Degtyarev, I. Filozova, K. Gertsenberger,

P. Klimai and A. Yakovlev, “Implementation

of the Event Metadata System for physics

analysis in the NICA experiments”, J. Phys.:

Conf. Ser. 2438, 012046 (2023).

• Event Metadata System
• Event Catalogue is based on PostgreSQL
• Integrates with BM@N Condition database
• REST API and Web UI developed based on

Kotlin multiplatform
• Configurable to support different metadata
• ROOT macro to fill in the catalogue
• Automatic deployment
• High Availability solution available
• Statistics collection and display
• Monitoring

Updated REST API scheme for EMS

12

HOSTNAME / SERVICE / VERSION / ENTITY?parameter_set

https://bmn-event.jinr.ru/event_api/v1/event?
GET

POST

DELETE

run_number=3950|4000&beam_particle=Ar

energy=3.16|3.18&target_particle=~Lead

HOSTNAME=https://bmn-[SYSNAME].jinr.ru

ENTITY=tablename without last ‘_’ (if present)

For the Event Metadata System (EMS), SYSNAME = event

SERVICE=[SYSNAME]_api

VERSION=v1 (v2…)

parameters are separated by ‘&’
ranges: min|max → >=min AND <=max

min| → >=min |max → <=max
LIKE a string template: =~pattern

For the Unified Condition Database (UniConDa), SYSNAME = uniconda

• The new scheme is unified for different BM@N Information Systems
• Use pipe (|) for ranges
• Use tilde (~) for string LIKE requests

For Geometry Database, SYSNAME = geo

Case
insensitive

KeyCloak Integration

• Authentication and authorization in EMS
• KeyCloak token-based authentication and authorization is now supported

• Bug that came out after KeyCloak migration/upgrade was fixed

• Database-based authentication is supported as before

• FreeIPA / LDAP support has been dropped

13

keycloak_auth:

server_url: "https://bmn-user.jinr.ru"

realm: "BMN"

client_id: "emd_api"

client_secret: "*****"

writer_group_name: "bmneventwriter"

admin_group_name: "bmneventadmin"

database_auth: True

Development of Next-Generation Event
Visualization Platform for BM@N
(an update)

14

• VisionForge – platform for creating next-gen visualization systems
• Distributed dynamic system

• Visualization model can be created on one node, transferred to another node and
rendered there

• Nodes can exchange updates to the model

• Changing one element or attribute only requires sending this small change

• Performance and optimizations
• BM@N geometry model includes more than 400 000 elements

• Geometry can be defined as prototype that is used by a set of objects, in this case
rendering is simplified – only required properties can be changed if needed

• Using Kotlin-Multiplatform

15

VisionForge Project Overview

See also: Alexander Nozik — Unbearable lightness of data visualization in Kotlin full stack
https://www.youtube.com/watch?v=uT5j-xOXC3E&ab_channel=JPoint%2CJoker%D0%B8JUGru

https://www.youtube.com/watch?v=uT5j-xOXC3E&ab_channel=JPoint%2CJoker%D0%B8JUGru

• Available online at http://10.220.16.81:8080/

• Example entry:
• Period number: 8

• Run number: 8000

• File address: /home/lab/events/mpd_run_Top_8000_ev1_p8.root

• Select event: 1, 2, 3,…

• Possible to run it on your own as well (not so simple right now)

• Please send us feedback (contacts on the title slide)!

16

Available for test now!

http://10.220.16.81:8080/

17

Geometry, tracks, scene graph, tuning

• Visualization of the detectors geometry with a choice of the detail level

• Working with the scene: the ability to scale, shift, rotate, display coordinate axes, coordinate grid (optional), section by
plane or parallelepiped, choice of background color. Saving an image to a file, it is possible to create a GIF animation
(optional). Optionally, the ability to display projections on separate tabs or windows in a common window.

• Show/hide geometric elements, set color, transparency. For a solid detector, we loaded from a prepared scheme (XML
or JSON) to replace the default.

• Ability to create buttons to which functionality can be attached (examples: light/dark background changes; show/hide
magnet)

• Visualization of particle collision events: display of tracks and hits, activated calorimeter towers. The source is either a
file (initially ROOT), or a data stream from the socket for online monitoring.

• Selection of event objects with viewing of their properties, editing of color, visibility, marker, size/thickness.
Selection/scrolling of transferred events in case of the source from a file. Event objects are presented as a hierarchical
tree, with tracks grouped by particle type. When an object is selected in the tree, the object is highlighted, and vice
versa, when an object is selected in the view, its properties are opened.

• Filter of displayed event objects: particles by their code, energy range, only primary tracks. Show/hide separately
simulated tracks/particles (before reconstruction), reconstructed tracks/particles

• Output general information: selected setup geometry, event number, number of events (if from file), number of
displayed geometry objects.

18

WIP Items

Development of a service for monitoring
software systems of the BM@N experiment

19

For checking stability and reliability of BM@N systems (Unified Condition
database, Configuration database, Integrity Inspector, Electronic LogBook,…):

• Endpoints state:
• network interfaces,
• memory,
• disk,
• CPU.

• Database (e.g. PostgreSQL):
• latency

• Web interfaces:
• HTTP requests checks (e.g. GET-request).

Using TIG (Telegraf + InfluxDB + Grafana) stack.

Monitored parameters

20

Host (where service is deployed)
availability

Service availability

Architecture for monitoring of the software systems

21

• Automated
deployment of
components with
Ansible playbooks

• Automated
configuration
generation (Jinja2 +
JSONs: Alerts and
Dashboard)

• Ease of scaling
because of module
architecture

• Failure alerting with
Grafana

BM@N monitoring client’s view (Dashboard)

22

BM@N monitoring alerting

23

Thank You!

24

