13th Collaboration Meeting of the BM@N JINR, Dubna, Russia, October, 8–10, 2024

Status of data analysis on Λ and $K^0_{_s}$ production in Run 8

JOINT INSTITUTE FOR NUCLEAR RESEARCH J. Drnoyan, I. Rufanov, V. Vasendina, <u>A. Zinchenko</u>, D. Zinchenko, R. Zinchenko

VBLHEP, JINR, Dubna, Russia

Outline

- ✓ BM@N configuration
- ✓ Reconstruction of strange particle decays
- ✓ Data quality checking
- ✓ Steps toward physics analysis:
 - ✓ Monte Carlo tuning
 - ✓ Λ lifetime measurement
 - ✓ Λm_T spectra vs lifetime and rapidity
 - ✓ K_{s}^{0} lifetime measurement
 - ✓ K_{s}^{0} m_{T} spectra vs lifetime and rapidity
 - Selection of decays with machine learningSummary and next steps

Detector geometry in Run 8

A. Zinchenko

Λ selection: time evolution

4

Production: Dec. 2023

Production: Feb. 2024

K⁰_s selection: time evolution

Production: Feb. 2024; Analysis: Aug. (4 cuts) & Oct. (MLP, 8 parameters)

08.10.2024

A. Zinchenko

V0: Data vs MC

08.10.2024

$\Xi^- \rightarrow \Lambda + \pi^-$, Data (20M events)

A. Zinchenko

BM@N

"Golden" runs:

7830, 7873, 7876, 7877, 7878, 7880, 7885, 7886, 7887, 7890, 7891, 7892, 7893, 7894, 7896, 7897, 7899, 7900, 7901, 7903, 7904, 7905, 7906, 7908, 7911, 7912, 7913, 7914 ~ **30M events**

"Hyperon production in Ar+KCl collisions at 1.76A GeV"

A. Zinchenko

BM@

STAR strangeness production studies

"Strange hadron production in Au + Au collisions at $\sqrt{s_{NN}}$ = 7.7, 11.5, 19.6, 27, and 39 GeV"

A. Zinchenko

BM@N

Monte Carlo tuning

Before corrections

X-residuals in Silicon (q > 0)

08.10.2024

X-residuals in Silicon (q < 0)

08.10.2024

X-residuals in GEM (q > 0)

08.10.2024

X-residuals in GEM (q < 0)

08.10.2024

After corrections

X-residuals in Silicon (q > 0)

08.10.2024

X-residuals in Silicon (q < 0)

08.10.2024

X-residuals in GEM (q > 0)

08.10.2024

X-residuals in GEM (q < 0)

08.10.2024

Station efficiencies: Si

08.10.2024

Station efficiencies: GEM

08.10.2024

Station efficiencies: Si

Shift hits in Y by 3 mm

08.10.2024

Station efficiency (hits on tracks)

EffY_2

-10

08.10.2024

A. Zinchenko

Detector efficiency (hits on tracks)

20 30

10

BM@N

08.10.2024

This material was a part of Roman Zinchenko's magister thesis

Lifetime of Λ: MC

Decay formula: $dN / dt = N_0 / \tau * exp(-t/\tau),$

 $N_0 = p0 * p1 = 54574$

Proper life time: $\tau = lm / (pc)$

Used statistics:

1M MC events 1M exp. data (run 7830)

Mixed background subtraction: Data

08.10.2024

A. Zinchenko

BM@N

Fitted background subtraction: Data

08.10.2024

A. Zinchenko

BM@N

Lifetime of Λ

Cuts: chi2s[0]>7&&chi2s[1]>5&&c2pv<5&&pts[0]>0.05&&pts[1]>0.1

Efficiency

chi2s[][1]>5

chi2s[][1]>4

chi2s[][1]>6

0.3

0.2

<u></u>_0.02□

W.018

0.016

0.014

0.012

0.008

0.006

0.004

0.002

8.1

0.01

Data corrected for efficiency

0.4

0.5

0.6

08.10.2024

Lifetime of Λ

Selection:	Ω3>2.3	Ω3>1	3 cuts (4 bins)	5 cuts	3 cuts (9 bins)
<i>τ</i> , ns	0.301±0.014	0.302±0.016	0.270±0.011	0.240±0.008	0.262±0.008
Multiplicity	1.168 ± 0.082	1.228±0.097	1.499 ± 0.100	1.359 ± 0.075	1.510 ± 0.082
χ^2 / NDF	0.71 / 2	2.61 / 2	1.01 / 2	1.50 / 2	8.22 / 7

3 cuts:	centr. Value	c2pv<4	c2pv<6	chi2s[1]>4	chi2s[1]>6	chi2s[0]>6	chi2s[0]>8
<i>τ</i> , ns	0.270±0.011	0.262±0.011	0.265±0.011	0.254±0.010	0.263±0.012	0.266±0.011	0.269 ± 0.012
Mult.	1.499 ± 0.100	1.430 ± 0.100	1.460 ± 0.100	1.360 ± 0.090	1.500 ± 0.110	1.420 ± 0.100	1.470 ± 0.100
χ²/NDF	1.01 / 2	1.00 / 2	0.63 / 2	2.23 / 2	1.49 / 2	0.88 / 2	1.10 / 2

08.10.2024

Lifetime of Λ : upper and lower detectors

MC

Data corrected for efficiency

BM@N

Λ double-differential spectra

ΛM_{inv} spectra for lifetime 0.1-0.2 ns

BM@

Yields and efficiencies vs m_{τ} for different lifetimes

0.6

Corrected for efficiency m_{τ} spectra for different lifetimes

Effective temperatures for different lifetimes

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

Effective temperature (MeV)

 $T1 = 146\pm7$ $T2 = 158\pm8$ $T3 = 149\pm8$ $T4 = 163\pm13$

 $T MC = 122 \pm 4$

A: bins *y* vs m_T

08.10.2024

Λm_T spectra in bins of y

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

 $T = 198 \pm 12, 164 \pm 7, 138 \pm 4, 117 \pm 6 \text{ MeV}$

This material was a part of Roman Zinchenko's magister thesis - redone

Lifetime of K⁰_s: MC

Decay formula: $dN / dt = N_0 / \tau * exp(-t/\tau),$ $N_0 = p0 * p1 = 427241$

Proper life time: $\tau = lm / (pc)$

Table value τ = 0.0895 *ns*

Used statistics:

1M MC events 1M exp. data (run 7830)

K⁰ invariant mass distributions

For different lifetimes

K⁰_s raw yield and efficiency

Efficiency-corrected yield vs lifetime

08.10.2024

K⁰ double-differential spectra

400

300

200

100

0

$K_{s}^{0} M_{inv}$ spectra for lifetime 0.025-0.075 ns

BN

Yields and efficiencies vs m_{τ} for different lifetimes

Corrected for efficiency m_{τ} spectra for different lifetimes

Effective temperatures for different lifetimes

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

Effective temperature
(MeV)
T1 = 115±3 (117±5)
T2 = 116±3 (113±5)
T3 = 107±3 (108±6)
T4 = 108±5 (125±16)

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

 $\frac{1}{T_B(y)} \frac{1}{T_B(y)} \frac{1}{$

 $T MC = 97 \pm 6$

0.6

K_{s}^{0} : bins y vs m_{T}

08.10.2024

$K_{s}^{0} m_{T}$ spectra in bins of *y* (may 2024 tune)

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

T = 134±13, 129±8, 113±6, 73±4 MeV

BM@N

$K_{s}^{0} m_{T}$ spectra in bins of y

Boltzman distribution from HADES paper

$$\frac{1}{m_t^2} \frac{d^2 M}{dm_t dy} = C(y) \exp\left(-\frac{(m_t - m_0)c^2}{T_B(y)}\right)$$

T = 124±8, 120±5, 104±4, 82±3 MeV

08.10.2024

Machine learning method K⁰_s: MC and Data

K⁰: MC, MLP (6 parameters)

0.7

0.8

Entries

Std Dev

Mass = 0.4968

Sigma = 0.0052

S/VS+B = 46.5

Mean

S/B = 2.0

S = 3220.7

0.9

MLP response

h

36825

0.4879

0.05016

(S,B): (0.0, 0.0)% / (0.0, 0.0)

08.10.2024

A. Zinchenko

50

K⁰: TC vs MLP, Data (run 7830)

Production: Feb. 2024, training with MC

A. Zinchenko

BM@

K⁰_s: decay curve with ML (6 vs 12 params, run 7830)

08.10.2024

A. Zinchenko

Summary and next steps

- \checkmark Monte Carlo needs another round of tuning.
- ✓ The procedure for Λ and K_{s}^{0} analysis was implemented.
- Machine learning for decay selection looks promising. Additional checks will be done.
- Centrality selection and trigger efficiency corrections (pile-up rejection) should be considered.

Thank you for your attention

