Status of analysis of flow of Lambda hyperons in Xe+Cs(I) run

V. Troshin, M. Mamaev, P. Parfenov, A. Taranenko JINR, NRNU MEPhI

13th Collaboration Meeting of the BM@N Experiment at NICA

October 8th, 2024

The work was supported by

"Fundamental and applied research at the NICA megascience experimental complex" №FSWU-2024-0024

 $v_{1,2}(y)$ in Au+Au $\sqrt{s_{NN}}$ =3 GeV: model vs. STAR data

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

Model description of v_n :

- Good overall agreement for v_n of protons
- v_n of light nuclei is not described
- v_n of Λ is not well described
	- nucleon-hyperon and \bullet hyperon-hyperon interactions
- Light mesons (π,K) are not described
	- No mean-field for mesons \bullet

Models have a huge room for improvement in terms of describing v_n

Λ potential U,

Yasushi Nara et al. *EPJ Web Conf.* 276 (2023) 01021 Yasushi Nara et al. *EPJ Web Conf.* 271 (2022) 08006 Yasushi Nara et al. *Phys.Rev.C* 106 (2022) 4, 044902 Strong repulsive Λ potential U_{$_{\Lambda}$} that is predicted by Λ chiral effective field theory(χ EFT) may explain the existence of two-solar-mass neutron stars by suppressing Λ in dense nuclear matter by Λ-N-N three-body interactions, and directed flow of Λ is expected to constrain U_{Λ}.

The picture shows the dv₁/dy slope of Λ for different potentials and comparison with STAR data. MD2 and MD3 is a different momentum dependences for U_A , GKW3 denotes a three-body interactions of Λ . It is shown that three-body interactions in JAM model with mean-field mode gives the best agreement with STAR data, especially for lower energy.

Anisotropic transverse flow

Spatial asymmetry of energy distribution at the initial state is transformed, through the strong interaction, into momentum anisotropy of the produced particles.

$$
E\frac{d^3N}{d^3p}=\frac{1}{2\pi}\frac{d^2N}{p_Tdp_Tdy}\t(1+\sum_{n=1}^{\infty} 2v_n\cos(n(\phi-\Psi_{RP})))\\v_n=\langle\cos(n(\phi-\Psi_{RP}))\rangle
$$

In the experiment reaction plane angle Ψ_{RP} can be approximated by participant Ψ_{pp} or spectator Ψ_{sp} symmetry planes.

Λ hyperon reconstruction and directed flow measurements $\Lambda \rightarrow p + \pi^{-}$

 dca_n

 dca_r

PV

- 1. Centrality and track selection
- 2. Build Λ positive charges as p, negative charges as π^-
- 3. Selection with Particle Finder software
- 4. Fitting the m_{inv} distributions
5. Obtain R.
- 5. Obtain R_1
6. Fitting y.
- 6. Fitting v_1 as a function of m_{inv}

$$
v^{SB}_1(m_{inv},p_T) = v^S_1(p_T) \tfrac{N^S(m_{inv},p_T)}{N^{SB}(m_{inv},p_T)} + v^B_1(m_{inv},p_T) \tfrac{N^B(m_{inv},p_T)}{N^{SB}(m_{inv},p_T)} \ \bullet \text{ PV} \textcolor{red}{-\text{primary vertex}}
$$

- V_0 vertex of hyperon decay
- dca distance of closest approach

 V_{0}

 $dca_{V₀}$

π

• path — decay length

 $path_{\wedge}$

 $\vec{p}_\Lambda = \vec{p}_p + \vec{p}_\pi$

Centrality and track selection

- Entire of the recent VF production was analysed
- Event selection criteria:
	- CCT2 trigger
	- Pile-up cut
	- \circ Number tracks for vertex > 1
	- Track selection criteria:
		- \circ Nhits > 5
		- \circ tracks with charge >0 are protons
		- tracks with charge<0 are π**-**

KFParticle formalism

Particles in heavy-ion collision:

KFParticle:

• developed for complete reconstruction of short-lived particles with their $P, E, m, c\tau, L, Y$

Main benefits:

- **•** based on the Kalman filter mathematics
- \bullet idependent in sense of experimental setup (collider, fixed target)
- allows one reconstruction of decay chains (cascades)
- daughter and mother particles are described and considered the same way
- daughter particles are added to the mother \bullet particle independently

Cut's dictionary

 $\chi^2(p) > 10$ χ^2 (pi)>200 $dca_{topo}<$ <0.7 cm $L>1$ cm $L/dL>6$ 2 geo <30 χ^2 χ^2 topo <40 cos_topo>0.999

Flow vectors

From momentum of each measured particle define a *u*_n-vector in transverse plane:

$$
u_n=e^{in\phi}
$$

where φ is the azimuthal angle

Sum over a group of $u_{\sf n}^{\sf}$ -vectors in one event forms Q_n-vector:

$$
Q_n = \tfrac{\sum_{k=1}^N w_n^k u_n^k}{\sum_{k=1}^N w_n^k} = |Q_n| e^{i n \Psi_n^{EP}}
$$

 Ψ_n^{EP} is the event plane angle

Flow methods for v_n calculation

M Mamaev et al 2020 PPNuclei 53, 277–281
Tested in HADES: M Mamaev et al 2020 J. Phys.: Conf. Ser. 1690 012122

Scalar product (SP) method:

$$
v_1=\tfrac{\langle u_1 Q_1^{F1}\rangle}{R_1^{F1}} \qquad \quad v_2=\tfrac{\langle u_2 Q_1^{F1} Q_1^{F3}\rangle}{R_1^{F1} R_1^{F3}}
$$

Where $\mathsf{R}_{_{1}}$ is the resolution correction factor

$$
R^{F1}_1=\langle\cos(\Psi^{F1}_1-\Psi^{RP}_1)\rangle
$$

Symbol "F2(F1,F3)" means $\mathsf{R}_{_{1}}$ calculated via (3S resolution):

$$
R_1^{F2(F1,F3)}=\frac{\sqrt{\langle Q_1^{F2}Q_1^{F1}\rangle\langle Q_1^{F2}Q_1^{F3}\rangle}}{\sqrt{\langle Q_1^{F1}Q_1^{F3}\rangle}}
$$

Originally implemented for protons, see M. Mamaev talk 08/10, 14:20

Method helps to eliminate non-flow Using 2-subevents doesn't

Symbol "F2{Tp}(F1,F3)" means R_1 calculated via (4S resolution):

$$
R_1^{F2\{Tp\}(F1,F3)}=\langle Q_1^{F2}Q_1^{Tp} \rangle \frac{\sqrt{\langle Q_1^{F1}Q_1^{F3}\rangle}}{\sqrt{\langle Q_1^{Tp}Q_1^{F1}\rangle \langle Q_1^{Tp}Q_1^{F3}\rangle}}
$$

Azimuthal asymmetry of the BM@N acceptance

φ yield of Λ candidates

Non-uniform acceptance - corrections are required

Corrections are based on method in: I. Selyuzhenkov and S. Voloshin PRC77, 034904 (2008)

2. Twist

Rescaling 3.

Efficiency map

For reconstruction efficiency 15 M events of simulation data with JAM model are used

Very limited p_T -rapidity coverage

Fitting the m_{inv} distributions in p_T -y bins

 p_T

For signal fit double gaussian function is used For background fit - pol5

Fitting the m_{inv} distributions of v_1

$$
v^{SB}_1(m_{inv}, p_T) = v^{S}_1(p_T) \tfrac{N^S(m_{inv}, p_T)}{N^{SB}(m_{inv}, p_T)} + v^{B}_1(m_{inv}, p_T) \tfrac{N^B(m_{inv}, p_T)}{N^{SB}(m_{inv}, p_T)}
$$

$$
v1S - have to findv1B - poll
$$

centrality: 10-40% p_T 0.5-1 GeV/c y_{CM} 0.4-0.6

STAR- BM@N comparison + JAM

15

Symmetry plane resolution and systematics

All the estimations for symmetry plane resolutions are in a good agreement $\frac{16}{16}$

RunId systematics of v_1

Results from different RunId intervals are in agreement within the errors

Summary

- First result of directed flow of Λ in Xe+Cs(I) run is provided
	- Study of systematics on symmetry plane and RunId shows deviation of no more than 5-10%
	- \circ Efficiency of reconstructed Λ from JAM simulations implementation shows small effect
	- \circ dv₁/dy|_{y=0} differs from STAR data investigation in progress
- Outlook
	- Apply differential fit procedure
	- Perform analysis with identified protons
	- Further efficiency study
	- Investigation of "feed-down" effect and momentum conservation
	- Write the Analysis Note

BACKUP

Momentum conservation correction

See M. Mamaev talk 08/10, 14:20

JAM -system-size comparison

counts

 χ^2 of proton to primary vertex

 χ^2 of daughters' tracks in their closest approach

