

Performance of the Highly Granular Neutron Detector prototype in Xe+CsI@3.8A GeV collisions at the BM@N experiment

A. Zubankov on behalf of the HGND team

Preparing for submission to JINST

09.10.2024

- Design of Highly Granular Neutron Detector prototype
- Selection criteria for EMD and hadronic interaction
- events with neutron emission
- HGND prototype efficiencies
- Neutron yields from hadronic interactions and EMD

HGND prototype design

HGND prototype in the Xe+CsI run

27° position:

Measurements of the neutron spectrum at ~ midrapidity.

0° position:

Test and calibration with known neutron energy (energy of a beam of spectator neutrons)

Interactions of nuclei

EMD:

without overlap of nuclear densities $b > R_1 + R_2$ A_1, Z_1

> In most cases, EMD of a heavy nucleus results in the emission of a single or just few neutrons with the production of a single residual nucleus

Hadronic interactions:

with overlap of nuclear densities

 $b < R_1 + R_2$

b

Criteria for selecting events with neutrons

Ultra-peripheral collisions – EMD:

- Single Xe ion in target + Beam trigger (BT)
- Forward Quartz Hodoscope (FQH) Z²>2500

Central & semi-central collisions – hadronic interactions:

- Single Xe ion in target + Central trigger (CCT2)
- Forward Detector amplitude < 4500
- Selection of events without charged particles, ToF cut, γ -cut (1.55 X $_0$ or 0.11 λ_{int})

Reconstruction of energy by maximum velocity

Scaled by incident ion beam rate

Event selection

Fastest cells for EMD vs hadronic interactions

Comparison of hadronic interactions (CCT2) with electromagnetic dissociation (BT) Run 8281 (BT) vs 8300 (CCT2) 3.8 AGeV H

Empty target vs CsI 2%

Empty vs Csl 2%

0.7 deg., 3.8 AGeV

Scaled by incident ion beam rate

HGND prototype efficiency for neutrons

Box generator Only neutrons

- VETO-cut
- γ-cut
- ToF cut

EMD vs Nuclear interaction in simulation

Neutron multiplicity – **1.05**

Neutron hit multiplicity on the surface – 1.02

^{*}I. Pshenichnov, Electromagnetic Excitation and Fragmentation of Ultrarelativistic Nuclei. *Phys. Part. Nucl.* **2011**, 42 (2), 215-250.

Neutron multiplicity – 14.21

Neutron hit multiplicity on the surface – **1.54**

^{**}M. Banzat et al., Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM, *Phys. Part. Nucl. Lett.* **2020**, 17, 303.

09.10.2024

HGND prototype efficiencies

Model	acc, %	ε, %	acc x ε, %
DCM-QGSM-SMM	3.87 ± 0.02	35.31 ± 0.15	1.37 ± 0.01
RELDIS	34.31 ± 0.25	61.31 ± 0.45	21.04 ± 0.15

The difference in *acc* is explained by the considerably smaller angular distribution of neutron emission in EMD than in hadronic interactions. The difference in ε is due to the ~1.5 times different average multiplicity of neutrons hitting the detector, since in the current detector configuration it is impossible to reconstruct more than 1 neutron in an event.

EMD vs Nuclear interaction

Time resolution

K.

Estimation of neutron yields

Experiment

$$\frac{\Upsilon_{hadr}}{\Upsilon_{EMD}} = 1.73 \pm 0.01(stat) \pm 0.17(sys)$$

$$\frac{Y_{hadr}}{Y_{EMD}} = 1.70 \pm 0.16(stat) \pm 0.25(sys)$$

- The acceptances and efficiencies of the HGND prototype to neutrons from the hadronic interaction and EMD were studied.
- The ratio of neutron yields from a hadronic interactions to EMD is 1.70±0.16±0.25, which is close to the simulation 1.73±0.01±0.17.
- EMD in the BM@N experiment can be used as a source of high energy neutrons with multiplicity ≈1 per event.
- Spectator neutrons from hadronic interactions and neutrons from EMD can be used to calibrate HGND and study its efficiency.
- The paper is being prepared for submission to JINST

Thank you for your attention!

Backup

HGND calibration

HGND calibration

1. Amplitude normalization

2. Time shift for all channels by the average fit value

HGND calibration

Time-amplitude

correction of signals made it possible to get rid of the dependence of time on signal amplitude, which improved the time resolution by ~2.4 times.

A. Zubankov

Nuclear interaction

between ¹⁹⁷Au nuclei at NICA at $Vs_{NN} = 5$ GeV

 A. Svetlichnyi & I. Pshenichnov, Formation of Free and Bound Spectator Nucleons in Hadronic Interactions between Relativistic Nuclei. *Bulletin of the Russian Academy of Sciences: Physics* 2020, 84 (8), 911–916.

b, fm

Average multiplicities of neutrons in 208 Pb $^{-208}$ Pb collisions at $Vs_{NN} = 5.02$ TeV as functions of the collision impact parameter

Nepeivoda, R. et al., Pre-Equilibrium Clustering in Production of Spectator Fragments in Collisions of Relativistic Nuclei. *Particles* **2022**, 5, 40–51.

Nuclear interaction

