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● Design of Highly Granular Neutron Detector prototype

● Selection criteria for EMD and hadronic interaction 

events with neutron emission

● HGND prototype efficiencies

● Neutron yields from hadronic interactions and EMD

Outline
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825 mm

• Scint. layer Veto 120x120x25 (мм)
• 1st (electromagnetic) part:

5 layers: Pb (8mm) + Scint. (25mm)
+ PCB + air

• 2nd (hadronic) part:
9 layers: Cu (30mm) + Scint. (25mm)
+ PCB + air

Scint. cell – 40 x 40 x 25 mm3

Total number of cells – 135

Total size – 12 x 12 x 82.5 cm3  

Total length ~ 2.5 λint

HGND prototype design

1st layer - VETO
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Necessary to separate showers from γ-quanta

Time resolution of cell 200 ps*,
+ with light collection heterogeneity 240 ps 

Hamamatsu S13360- 6050PE 
Photosensitive area – 6x6 mm2

Number of pixels – 14400
Pixel size – 50 μm 
Gain – 1.7x106

PDE – 40%

12 см

12 см

*F.F. Guber et al.
10.31857/S0032816223030060

https://doi.org/10.31857/S0032816223030060


HGND prototype in the Xe+CsI run

0° position:

Test and calibration with known
neutron energy (energy of a
beam of spectator neutrons)

27° position:

Measurements of the neutron
spectrum at ~ midrapidity.

HGNdet
pos. 1 (27°)

HGNdet
pos. 2 (0°)

FHCal

Central 
tracker

Outer tracker
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Kruglova I.



Hadronic interactions: 
with overlap of nuclear densities

EMD:
without overlap of nuclear densities

In most cases, EMD of a 
heavy nucleus results in 
the emission of a single 
or just few neutrons 
with the production of a 
single residual nucleus

Interactions of nuclei
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Ultra-peripheral collisions –
EMD:

• Single Xe ion in target + Beam trigger (BT)
• Forward Quartz Hodoscope (FQH) Z2>2500

Run 8281
3.8A GeV
CsI 2%
0.7 deg. pos.
BT trigger

Central & semi-central collisions –
hadronic interactions:

• Single Xe ion in target + Central trigger (CCT2)
• Forward Detector amplitude < 4500

Run 8300
3.8A GeV
CsI 2%
0.7 deg. pos.
CCT2 trigger

Criteria for selecting events with neutrons
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Reconstruction of energy by maximum velocity
Scaled by incident ion beam rate

• Selection of events without charged particles, ToF cut, γ-cut (1.55 X0 or 0.11 λint)



Comparison of hadronic interactions (CCT2) with 
electromagnetic dissociation (BT) 

on Hodoscope vs FD
Run 8281 (BT) vs 8300 (CCT2) 3.8A GeV

Event selection
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FD FQH
Xe ions on Hodoscope 

around Z2=3000 in EMD

Hodo Z2>2500 cut

BT CCT2
FD amplitude 
< 4500 cut



EMD hadronic

γ-quanta cut – no hits in 1-2 layers in module => 1.55 X0 or 0.11 λint

Comparison of hadronic interactions (CCT2) with electromagnetic dissociation (BT)
Run 8281 (BT) vs 8300 (CCT2) 3.8 AGeV

Fastest cells for EMD vs hadronic interactions
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Most of the neutrons are deposited after the 7th layer for 
both EMD and nuclear interaction

1 2 3

4 5 6

7 8 9

– 7th layer



Empty vs CsI 2%
0.7 deg., 3.8 AGeV

Scaled by incident ion beam rate

Empty target vs CsI 2%
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%
HGND prototype efficiency for neutrons
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Box generator 
Only neutrons

• VETO-cut
• 𝛾-cut
• ToF cut



EMD vs Nuclear interaction in simulation
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*I. Pshenichnov, Electromagnetic Excitation and Fragmentation of 
Ultrarelativistic Nuclei. Phys. Part. Nucl. 2011, 42 (2), 215-250.

Neutron multiplicity – 14.21
Neutron hit multiplicity on the surface – 1.54

DCM-QGSM-SMM** (0-60%)
131Xe + Cs @ 3.8AGeV

3.165hadr

inc b =

Neutron multiplicity – 1.05
Neutron hit multiplicity on the surface – 1.02

RELDIS*

124Xe + 130Xe @ 3.8 AGeV

1.894EMD

inc b =

**М. Banzat et al., Monte-Carlo Generator of Heavy Ion Collisions 
DCM-SMM, Phys. Part. Nucl. Lett. 2020, 17, 303.



HGND prototype efficiencies

09.10.2024 12A. Zubankov

hit

gen

N
acc

N
= rec

hit

N

N
 =

Model acc, % ε, % acc x ε, %

DCM-QGSM-SMM 3.87 ± 0.02 35.31 ± 0.15 1.37 ± 0.01

RELDIS 34.31 ± 0.25 61.31 ± 0.45 21.04 ± 0.15

The difference in acc is 
explained by the considerably 
smaller angular distribution of 
neutron emission in EMD than 
in hadronic interactions. 

The difference in ε is due to the 1.5 times 
different average multiplicity of neutrons 
hitting the detector, since in the current 
detector configuration it is impossible to 
reconstruct more than 1 neutron in an event.



EMD vs Nuclear interaction
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0.83hadrk 0.74EMDk 

280 ps 280 ps



280 ps

240 ps

280 ps

240 ps

Time resolution
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FWHM  2.2 GeV FWHM  2.8 GeV

FWHM  2 GeV FWHM  2.4 GeV



Estimation of neutron yields
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Conclusions

● The acceptances and efficiencies of the HGND prototype to neutrons 
from the hadronic interaction and EMD were studied.

● The ratio of neutron yields from a hadronic interactions to EMD is 
1.70±0.16±0.25, which is close to the simulation – 1.73±0.01±0.17.

● EMD in the BM@N experiment can be used as a source of high energy 
neutrons with multiplicity 1 per event.

● Spectator neutrons from hadronic interactions and neutrons from 
EMD can be used to calibrate HGND and study its efficiency.

● The paper is being prepared for submission to JINST
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Thank you for your attention!



Backup
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HGND calibration



1. Amplitude normalization

landau fit

HGND calibration

1
Ampl Ampl

MPV
= 

2. Time shift for all channels by the average fit value

3. Determination of
parameters of the
approximating function for all
channels & time limit

4. Time-amplitude correction 5. Time shift

Signal, MIP

Signal, MIP Signal, MIP
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HGND calibration

Time-amplitude
correction of signals
made it possible to get
rid of the dependence of
time on signal
amplitude, which
improved the time
resolution by ~2.4 times.
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EMD vs Nuclear interaction
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Nuclear interaction

24

Average multiplicities of neutrons in 208Pb–208Pb collisions at 
√sNN = 5.02 TeV as functions of the collision impact parameter

Number of free spectator nucleons as a 
function of the impact parameter in collisions 
between 197Au nuclei at NICA at √sNN = 5 GeV

A. Svetlichnyi & I. Pshenichnov, Formation of Free and 
Bound Spectator Nucleons in Hadronic Interactions 
between Relativistic Nuclei. Bulletin of the Russian 

Academy of Sciences: Physics 2020, 84 (8), 911–916.

Nepeivoda, R. et al., Pre-Equilibrium Clustering in 
Production of Spectator Fragments in Collisions of 

Relativistic Nuclei. Particles 2022, 5, 40–51.



Nuclear interaction
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