

Hypernuclei signal observation in the BM@N experiment

E.Konstantinova (ISU), <u>S.Merts</u>, I.Rufanov

13thCollaboration Meeting of the BM@N Experiment at the NICA Facility Dubna, Russia

09/10/24

What are hypernuclei?

Charged particle decays

$^3_{\Lambda}\text{H} \rightarrow {}^3\text{He} + \pi^-$	$^3_{\Lambda} H \rightarrow d + \rho + \pi^-$
${}^{4}_{\Lambda}H ightarrow {}^{4}He + \pi^{-}$	${}^{\hat{4}}_{\Lambda} H \rightarrow t + \rho + \pi^{-}$

Hypernuclei reconstruction

Why hypernuclei are interesting?

Two particle decay

It's not enough to have a time-of-flight technique to identify helium

S. Merts

Hypernuclei reconstruction

GEM dE/dx

Cluster signal in GEM detectors is proportional to energy loss and could be used to separate helium

As it was in Argon data (2018):

GEM signal scaling

The goal: to equalize distributions in the horizontal direction

Linear transformation:

 $L_1 = a \cdot L_2 + b$

$$\mathsf{R}_1 = \mathsf{a} \cdot \mathsf{R}_2 + \mathsf{b}$$

Proposal of I.Rufanov

dE/dx in GEM

Signals from 7 GEM detectors

before scaling

dE/dx in GEM

- It was 7 GEM stations in run 8. Only tracks with 3+ GEM hits were taken into account.
- dE/dx has Landau distribution, so the mean value is shifted by the reason of long "tail".
- The truncated mean was used for analysis (40% hits with maximal signal were removed).

Number of GEM hits	3	4	5	6	7
Used hits	2	2	3	4	4
In percent	67	50	60	67	57

GEM dE/dx vs mass

FSD affection

TOF-400

Hypernuclei reconstruction

³He hit composition

Experimantal data for analysis

- Beam energy 3.8 AGeV
- Physics trigger (Mixed/CCT1/CCT2/MBT)
- Statistics $pprox 3 \cdot 10^8$ events
- Csl target
- Primary vertex (MpdVertex with 2+ tracks) in ranges: -5.0 < x < 5.0, -5.0 < y < 5.0, -1.0 < z < 1.0
- Each track in pair-candidate has at least 4 hits
- Positive track in pair-candidate has at least 3 hits in GEM detectors

Experimantal data

 ${}^4\mathsf{H}_\Lambda$ $^{3}H_{\Lambda}$ Entries / (2 MeV/c²) 3000 Entries / (2 MeV/c²) 1000 2500 800 2000 600 1500 Parameters: Parameters: S = 836 S = 286 S / B = 0.06 400 S / B = 0.10S / $\sqrt{S + B} = 5.20$ 1000 $S/\sqrt{S+B} = 7.07$ $\mu = 2.9923$ $\mu = 3.9253$ 200 500 $\sigma = 0.0025$ $\sigma = 0.0017$ 0 3.88 3.9 3.92 3.94 3.96 M_{4He+ x}, GeV/c²

MC data

 $^{3}H_{\Lambda}$

by E.Konstantinova during summer school

S. Merts

Conclusion

The main positive result

 $\bullet\,$ The first stable signals of ${}^{3}\text{H}_{\Lambda}$ and ${}^{4}\text{H}_{\Lambda}$ observed in the BM@N experiment

Steps for signal improvement

- New production with better TOF-700 efficiency (factor 2-3)
- More accurate analysis of dE/dx in GEM for the separation of ⁴He from deuterons
- Standalone matching of STS tracks and TOF hits to reduce background