Centrality Determination in Xe+Cs(I) based on multiplicity

Demanov Alexander (MEPhi) Peter Parfenov (JINR) Arkady Taranenko (MEPhI, JINR)

This work is supported by: Project "Fundamental and applied research at the NICA megascience experimental complex" № FSWU-2024-0024

BM@N analysis meeting, 08/10/2024

Motivation for centrality determination

• Evolution of matter produced in heavy-ion collisions depends on its initial geometry

 Goal of centrality determination: <u>map (on average) the collision geometry parameters</u> <u>to experimental observables (centrality estimators)</u>

 Centrality class S₁-S₂: group of events corresponding to a given fraction (in %) of the total cross section:

$$C_S = \frac{1}{\sigma_{inel}^{AA}} \int_{S_1}^{S_2} \frac{d\sigma}{dS} dS$$

Centrality determination

Eur. Phys. J. A (2018) 54: 85

Centrality	b_{\min}	$b_{\rm max}$	$\langle b \rangle$
Classes			
0 – 5 %	0.00	3.30	2.20
5 - 10 %	3.30	4.70	4.04
10 - 15 %	4.70	5.70	5.22
15 - 20 %	5.70	6.60	6.16
20 - 25 %	6.60	7.40	7.01
25 - 30 %	7.40	8.10	7.75
30 - 35 %	8.10	8.70	8.40
35 - 40 %	8.70	9.30	9.00
40 - 45 %	9.30	9.90	9.60
45 - 50 %	9.90	10.40	10.15
50 - 55 %	10.40	10.90	10.65
55 - 60 %	10.90	11.40	11.15

STAR, Au+Au, BES

Centrality determination based on multiplicity provides with:

impact parameter (b)

Npart

number of participating nucleons (N_{part})

Similar centrality estimator is needed for comparisons with STAR, HADES, etc. 3

- Use MC Glauber for centrality determination
- The MC Glauber non-realistic N_{part} simulations at low energies
- Differences in of number of participant nucleons (N_{part}) distributions from UrQMD and MC
- The impact parameter (b) model independent centrality estimator

Centrality determination based on Monte-Carlo sampling of produced particles

Implementation of "pileup" in the centrality determination procedure

Pileup events occur with the probability α_m at the m multiplicity bin. The probability to find N particles of interest at multiplicity m with the pileup effects is given by: $P_m(N) = (1 - \alpha_m)P_m^{single}(N) + \alpha_m P_m^{pileup}(N)$

Event selection

- Xe+Cs 3.8 GeV
- Production= last
- Physical runs
- Triggers: CCT2
- Remove BadRuns
- Corrected on <VtxX>, <VtxX>, <VtxZ> for each RunId
- Event selection:
 - More than 1 track in vertex reconstruction
 - $VtxR < 1.0 \text{ cm} (sqrt(VtxY_{corr}^2 + VtxX_{corr}^2) < 1 \text{ cm})$
 - \circ VtxZ < 0.1 cm
 - Apply graphics cuts
 - Remove pileup (from Oleg Golosov)

Centrality based on MC-Glauber at low energies

Centrality determination: pileup rejection

During the run8 the luminosity changes -> different pile-up contribution:

- Fit predicts **6%** pileup events for Run 7400-7450
- Fit predicts 2% pileup events for Run 7620-7640

Centrality determination: pileup rejection

*Def cuts:

Rhys runs

• CCT2

vtxNtracks > 1

• V_R <1 cm

• |V_¯| < 0.1 cm

Remove BabRuns

*Pileup cuts from Oleg Golosov

- The "pileup" cut was applied with run-by-run corrections
- pileup cuts removes ~25% events
- We use the new multiplicity in our centrality procedure

Centrality determination after remove "pileup"

Change fit result

- f: 0.5 -> 0.4
- k: 0.25 -> 0.28
- µ: 0.44 -> 0.42
- pileup: 5.5% -> 0.3%

After pileup rejection the "pileup" events contribution is less 1%

Centrality determination after refMult correction: vs cent

Multiplicity & RunID: Effect of voltage

N tracks

Multiplicity & RunID: Effect of temperature

Multiplicity correction

RunId_{ref}: 8120-8170

<u>Shift (or scale)</u>:

• Extract the high-end point of refMult distribution in each RunId via fitting the refMult tail by the function:

 $f(refMult) = A^*Erf(-\sigma^*(refMult-h)) + A$

 refMult can then be corrected by: refMultCorr = refMult * h_{ref} / h(RunId)

Reweight:

- refMult bin by refMult bin weight each event by the ratio of normalized refMultCorr for RunId_{ref} to refMultCorr for this RunId
- This gives the refMultCorr distributions at each RunId value the same shape

Centrality determination after refMult correction (7310-7500)

Example, multiplicity [49;71):

- corresponding 30-40% for Run 8150-8170
- corresponding 20-30% for Run 7310-7500

We suggest using the "shift" correction

Centrality determination after refMult correction: vs cent

Summary and outlook

- A new approach to accounting for pileup is considered
- The MC-Glauber method reproduce charged particle multiplicity for fixed-target experiment at BM@N
- Corrections for vertex and RunId was proposed
- Optimization of selection criteria:
 - reduction the pileup effect
- Consider the multiplicity h^- / π^{+-} to determine centrality
- Adding centrality and refMult in bmnroot

Thank you for your attention!

Vertex Z

Main problem with centrality based on MC-Glauber at low energies

Runld: 8120-8170

Multiplicity Cuts:

• CCT2

• (Sts digi vs N_{tr}) cut

Fit suggests unphysical results

- **f=0** means that hard processes are dominating
- hard to fit pion multiplicity (or small systems)

Maybe our parametrization of multiplicity is not working at low energies?

21

Multiplicity in pp/nn/np collisions

Generally NBD is used to define multiplicity N_{ch} in such collisions:

$$P(n;\mu,k) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \frac{\left(\frac{\mu}{k}\right)^n}{\left(\frac{\mu}{k}+1\right)^{n+k}}$$

Mean:
$$\mu$$

Variance: μ/k

(µ+k)

It works at high energies where $\mu > 1$, k > 1.

However at lower energies we likely have situation where $\mu < 1$, k < 1. NBD cannot be applicable in that case. We have to use generalized function - gamma distribution (GD):

$$P(x;\mu,k) = \frac{e^{-\frac{x}{\beta}}x^{\alpha-1}}{\beta^{\alpha}\Gamma(\alpha)}, \alpha = \frac{\mu k}{\mu+k}, \beta = \frac{\mu}{k} + 1$$

Mean: µ

Variance: μ/k

(µ+k)

Multiplicity in pp/nn/np collisions

Case 1: k > 1, $\mu \sim \sigma^2 = \mu/k \cdot (\mu + k)$. The mean multiplicity is generally on the same level as its variation.

Case 2: k < 1, $\mu < \sigma^2 = \mu/k \cdot (\mu + k)$. The mean multiplicity might be smaller than its variation.

Case 1 can be defined with both NBD and GD. Case 2 can be defined with GD only!

Case 2 can be more feasible at lower energies, where we have smaller multiplicities and relation between μ and σ^2 might vary greatly

What do we get if we implement it into our centrality procedure?

Multiplicity fit & centrality classes: h⁻

dN/dN_{ch} BM@N Run8, Xe+Csl N $_{a}$ =fN $_{part}$ +(1-f)N $_{coll}$ f=0.8,k=0.1, μ =0.25,p=4.1%, χ^{2} /ndf=1.07 \pm 0.06 Multiplicity Cuts: 10⁵ **≡** CCT2 🗆 fit data N_{vtxTr}>1 10⁴ \triangle single \diamond pile-up E (Sts digi vs N_{tr}) cut V_r <1 mm 10³ ********* $V_{_{7}} < 0.2 \text{ mm}$ q<1 10² 10 data/fit 0.5 0_Ò 20 40 60 80 100 120 140 160 N_{ch}

24

 vs Centrality: comparison

- Difference in the most central class is due to pile-up:
 - Cut on maximum multiplicity differs a little in cases of h[±] and h⁻
- The difference in the mid-central region is within 5%
 - The possible effect from spectators in the case of h[±] multiplicity seems to be small

Multiplicity corrections: shift

Procedure:

- Runld_{ref}: 8120-8170
- Extract the high-end point of refMult distribution in each RunId via fitting the refMult tail by the function:

 $f(refMult) = A*Erf(-\sigma*(refMult-h)) + A$

• refMult can then be corrected by:

RunId_CorrFactor(RunId) = h_{ref} / h(RunId) refMultCorr = refMult * RunId_CorrFactor

Mult vs Runld: Shift(1)

Multiplicity corrections: reweight

Procedure:

- Runld_{ref}: 8120-8170
- refMult bin by refMult bin weight each event by the ratio of normalized refMultCorr for RunId_{ref} to refMultCorr for this RunId
- This gives the refMultCorr distributions at each RunId value the same shape

Mult vs Runld: Shift and re-weight

Multiplicity after corrections:

- will be added in bmnroot
- used to centrality determination

The multiplicity distribution generated from the Glauber

30

Mult vs Runld: Shift and re-weight (zero bins eval)

Pileup

Pileup:

- 1. Select events with CCT2
- 2. Select events with "one interaction" (next slide):
 - a. Fit of each run ID with Gaus (bc1s,fd)
 - b. Scale
 - c. Select events with "one interaction"
- 3. Graphic cut:
 - a. Fill StsDigits vs nTracks
 - b. Fit of each nTracks bin with Gaus
 - c. fun(nTracks,StsDigit)

Vtx > 1

Multiplicity & RunID: Effect of voltage

Implementation of "pileup" in the centrality determination procedure

 $\pmb{\alpha}\xspace$ - the probability to find a pileup event among all collision events.

Pileup events occur with the probability α_m at the m multiplicity bin, then multiplicity (m):

 $P_m(N) = (1 - \alpha_m)P_m^t(N) + \alpha_m P_m^{pu}(N)$ $P_m^t(N)$ and $P_m^{pu}(N)$ - are the probability distribution functions of N for the true (single-collision) and pileup events.

Centrality determination after refMult correction: vs cent

Remove pileup: sts digits vs nTracks (Run7400-7450)

Model dependence of b, N_{part}

The MC Glauber non-realistic \mathbf{N}_{part} simulations at low energies

Differences in of number of participant nucleons (N_{part}) distributions from UrQMD and MC

The impact parameter (**b**) - model independent centrality estimator

Use MC Glauber for centrality determination

Eur. Phys. J. C 83, 792 (2023)

Centrality determination after refMult correction: vs cent (check)

