ML-based neutron reconstruction in the HGND at the BM@N experiment

BM@N 13th Collaboration Meeting,

Vladimir Bocharnikov, HSE University on behalf of the HGND group

09.10.2024

EOS for high baryon density matter

A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080

V. Bocharnikov. 13th BM@N Collaboration meeting

$$(
ho,0)+E_{sym}(
ho)\delta^2+O(\delta^4)$$

$$\delta = (
ho_n -
ho_p) /
ho$$
 - Isospin asymmetry

- Neutron flow measurements are essential to further constrain symmetry energy
- Sensitive observables:

Anisotropy flow coefficients:

 $\frac{dN}{d\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \Psi_{RP})], \ v_n = \langle \cos[n(\phi - \Psi_{RP})] \rangle$

Notivation

Measurements of neutron flow and yields require reconstruction of neutrons

Neutron reconstruction task:

- Identify neutrons produced in reaction in presence of background use of high granularity
- Reconstruct neutron kinematics:
 - Kinetic energy time-of-flight (ToF) method
- Multi-parameter task ⇒ may benefit from **ML-based methods**

Highly granular time-of-flight neutron detector (HGND)

Longitudinal structure

- •(2x) 8 layers: 3cm Cu (absorber) + 2.5cm Scintillator + 0.5cm PCB; 1st layer — 'veto' before absorber →Total length: ~0.5m, ~1.5 λ_{in}
- ➡ neutron detection efficiency ~60% @ 1 GeV
- Transverse size: **44x44 cm**²
- 11x11 scintillator cell grid

V. Bocharnikov. 13th BM@N Collaboration meeting

Active layer

- scintillator cells:
 - size: 4x4x2.5 cm³,
 - total number of cells: 968 (x2)
 - individual readout by SiPM
 - •expected time resolution per cell: ~150 ps

Configuration and Simulations

- •HGND sub-detectors are located at 10° to the beam axis at ~7m from the target
- Monte-Carlo event simulations:
 - DCM-QGSM-SMM model + Geant4
 - ~0.5M events Bi+Bi @ 3 AGeV
 - Only top sub-detector will be discussed further

V. Bocharnikov. 13th BM@N Collaboration meeting

- Each hit caused by a primary neutron (MotherID=-1) is linked to corresponding MC particle
- Multiplicity counts require existence of 'Head' hit — with $\delta(E_{ToF}) < 0.3$ **Primary neutron multiplicity**

V. Bocharnikov. 13th BM@N Collaboration meeting

Dataset

ToF energy for *n*⁰ hypothesis:

$$E_{ToF} = m_n \left(\frac{1}{\sqrt{1-\beta^2}} - 1\right)$$

- $t_{hit} + \mathcal{N}(0, \sigma = 150 \text{ ps}) < 40 \text{ ns}$
- hits with E_{ToF}>10GeV are set to 10 GeV

Hit E_{ToF} distribution

Graph Neural Networks (GNN)

Why Graph Neural Networks:

- Natural vector event representation
 - Detector cell hits as graph nodes
- Easily applied to sparse data with variable input size
 - Typically we have signal only in small fraction of sensors
- Captures event structures
- Increasing number of successful implementations in HEP

Message passing architecture

Key idea:

- Edges propagate information between nodes in a trainable manner to encode local graph structures
- Node embeddings are then aggregated to a problem-specific value, e.g.:

 - Target value neutron energy

Graph construction:

- Nodes hits. Observables per hit:
 - hit coordinates; Edep > 3 MeV ~ 0.5 MIP; ETOF
 - additional global event node connected to each hit node
- **139004** graphs
- Constructed event graphs are split 50/50% to train and test procedure

Heterogenius GNN Model:

- Graph convolution layers between hit nodes. Hidden state size: 512
- Graph attention layers between hit and global node. Hidden state size: 512

V. Bocharnikov. 13th BM@N Collaboration meeting

GNN MODE

Output

Simultaneous training for 3 tasks:

- Neutron 'head' class for each hit
 - Binary cross entropy loss function
- Neutron energy prediction for each hit
 - MSE loss function (only on MC truth 'heads')
- Number of neutrons in event (0 to 3)
 - Cross entropy loss function

Neutron Head Prediction

V. Bocharnikov. 13th BM@N Collaboration meeting

$$\frac{TP}{TP + FN}$$

$$\frac{FP}{TN + FP}$$

- Overall good hit classification performance
- Requires additional clustering algorithms to be used in neutron reconstruction

Neutron Multiplicity Prediction

V. Bocharnikov. 13th BM@N Collaboration meeting

- Good separation of neutron events as a binary problem
- Higher multiplicities require more sophisticated algorithms
 - Multiplicity prediction -> unsupervised clustering

Simple Clustering Algorithm

- - For N > 1 select component with max(mean 'head' score)

V. Bocharnikov. 13th BM@N Collaboration meeting

Reconstruction example

V. Bocharnikov. 13th BM@N Collaboration meeting

- Delayed depositions have lower 'head' score
- Same neutron produce similar score for 'heads'
- Gaussian Mixture approach potentially can be extended to reconstruct neutron with multiplicities > 1
- Combination with 'classic' cluster algorithm is foreseen

Summary

- Machine learning approach for the neutron reconstruction in the HGND is presented and preliminary results are discussed.
 - Graph Neural Networks are used to capture local event structures
 - Simultaneous training on neutron local and global event levels is applied
 - Single neutron reconstruction performance is discussed
 - Work in progress

Backup

Neutron reconstruction

threshold = 0

Y_{true}

Background contribution reconstructed energy is distributed similarly to signal neutrons

V. Bocharnikov. 13th BM@N Collaboration meeting

threshold = 0.5

threshold = 0.8

V. Bocharnikov. 13th BM@N Collaboration meeting

Energy prediction

Energy correction

V. Bocharnikov. 13th BM@N Collaboration meeting

E_{kin} [GeV]

Neutron energy spectrum for test dataset (163327 events) after applying classification and energy regression models

- Spectra become closer by increasing classification score threshold
- Tails are less consistent between true and predictions
- Energy reconstruction GNN was not trained to predict 0 energies \Rightarrow

background contribution spread over energy spectrum

possible solution: combined training

V. Bocharnikov. 13th BM@N Collaboration meeting

Previous analysis iteration