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EOS for high baryon density matter

The binding energy per nucleon: EA (,0, 5) — EA (,0, O) -+ Esym (,0)52 -+ 0(54)
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A. Sorensen et. al., Prog.Part.Nucl.Phys. 134 (2024) 104080
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Motivation

Measurements of neutron flow and yields require reconstruction of neutrons

Neutron reconstruction task:

e |dentify neutrons produced in reaction in presence of background
= yse of high granularity

e Reconstruct neutron kinematics:
e Kinetic energy — time-of-flight (ToF) method

e Multi-parameter task = may benefit from ML-based methods
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Highly granular time-of-flight neutron

detector (HGND)

Longitudinal structure Active layer

\

A

scintillator \ photodetector
*(2x) 8 layers: 3cm Cu (absorber) + 2.5cm Scintillator  +scintillator cells:
+ 0.5cm PCB; 1st layer — ‘veto’ before absorber esize: 4x4x2.5 cms3,
= [otal length: ~0.om, ~1.5 A, etotal number of cells: 968 (x2)
= neutron detection efficiency ~60% @ 1 GeV *individual readout by SIPM
* [ransverse size: 44x44 cm? »expected time resolution per cell: ~150 ps

» 11x11 scintillator cell grid
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Configuration and Simulations
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*HGND sub-detectors are located at 10° to the beam axis at ~7m from the target
* Monte-Carlo event simulations:
« DCM-QGSM-SMM model + Geant4
» ~0.5M events Bi+Bi @ 3 AGeV
* Only top sub-detector will be discussed further
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Dataset

* Each hit caused by a primary neutron ToF energy for n? hypothesis:
(MotherlD=-1) is linked to corresponding 1
: Eror = 1y, 1
MC particle V1=
* Multiplicity counts require existence of e thit+t V(0,0 = 150ps) < 40ns
‘Head’ hit — with 6(E1or) < 0.3 e hits with Etor>10GeV are set to 10 GeV
Primary neutron multiplicity Hit E1or distribution
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Graph Neural Networks (GNN)

Why Graph Neural Networks: Message passing architecture
» Natural vector event representation Key Idea:
» Detector cell hits as graph nodes e Edges propagate information between nodes in a
» Easily applied to sparse data with variable trainable manner to encode local graph structures
iInput size e Node embeddings are then aggregated to a
» Typically we have signal only in small problem-specific value, e.qg.:
fraction of sensors e Graph/hit class “probability” — signal/background
» Captures event structures e Jarget value — neutron energy
» Increasing number of successful
implementations in HEP () ma mar
|
N N r 9
x2 T Ya)  (mal Yma) (a7 Tms
Graph. - Messages. o Propagation.

J. Gilmer et al.,, "Neural message passing for quantum chemistry,” 2017.
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https://arxiv.org/pdf/2007.13681.pdf

GNN Model

Graph construction: Output
* Nodes — hits. Observables per hit: Simultaneous training for 3 tasks:
* hit coordinates; Edep > 3 MeV ~ 0.5 MIP; e Neutron ‘head’ class for each hit
Etor e Binary cross entropy loss function
* additional global event node connected to e Neutron energy prediction for each hit
each hit node e MSE loss function (only on MC truth ‘heads’)

* 139004 graphs

* Constructed event graphs are split 50/50% to
train and test procedure

e Number of neutrons in event (0 to 3)
e Cross entropy loss function

---------------------------------------------------------------------------------------------------------------------------------------------------------------------

GNN Hit class
Heterogenius GNN Model: | | prediction
e Graph convolution layers between hit Thi eneray '

' ize: x8 N

nodes. Hlddgn state size: 512 | T _ | prediction
 Graph attention layers between hit and attention | N
: e _ || N neutrons |
global node. Hidden state size: 512 x8‘convolut|on | prediction |
\&ijy PyTorch Geometric library o xBattention | output |
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https://arxiv.org/abs/1902.07153
https://arxiv.org/abs/1710.10903

Neutron Head Prediction
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Neutron Multiplicity Prediction

Number of neutrons Number of neutrons
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Simple Clustering Algorithm

» Gaussian Mixture clustering approach to find best neutron cluster
» Variables: hit coordinates, time, Etor, 'head’ score (6D Gaussian)
* N components = 1 to 3 for each event
* For N > 1 select component with max(mean ‘head’ score)
* Enecarest — closest neutron energy to prediction (mean Etor per cluster)
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Reconstruction example

0.3053866344417157
0.669092359665289
neutron score: 0.1657184230945527
neutron score: 0.022741372617821658
1gm scores: [0.45783916]
2gm scores: [0.26996891 0.59203222]
3gm scores: [0.34623281 0.59203222 0.21912647]
1 cluster prediction: [1.74045778]
2 cluster prediction: [1.48013984 1.92639919]
3 cluster prediction:
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*all MC truth contributions are circled
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[1.53982338 1.92639918 1.44035095]

MC truth neutron energies
() 1.827288

2.1037049999999997

1.737217

*only MC truth heads are circled

» Delayed depositions have lower
‘head’ score

* Same neutron produce similar

score for ‘heads’
» Gaussian Mixture approach

potentially can be extended to
reconstruct neutron with
04 multiplicities > 1
» Combination with ‘classic’
02 cluster algorithm is foreseen
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Summary

* Machine learning approach for the neutron reconstruction in the HGND is
presented and preliminary results are discussed.

» Graph Neural Networks are used to capture local event structures

» Simultaneous training on neutron local and global event levels is applied
» Single neutron reconstruction performance is discussed

* Work In progress
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Backup



Neutron reconstruction

threshold =0 threshold = 0.5 threshold = 0.8

e Background contribution reconstructed energy is distributed similarly to signal neutrons
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Energy prediction
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N events

EToF:

Threshold 0.25
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Energy correction
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Neutron energy spectrum

Neutron energy spectrum for test dataset

10° 1 pred pred pred
(163327 events) after applying classification | 1 — score>=00 ' score>=05 ! score>=0.8
and energy regression models - " eore > 00 U score >= 05 Ui score >= 0.8

» Spectra become closer by increasing O R e DCM-QGSM-SMM
classification score threshold s | iF Bi+Bi @ 3 AGeV

* Tails are less consistent between true § o -
and predictions v ="'f'il—jl_j__=l_

» Energy reconstruction GNN was not 50 0T L
trained to predict O energies = T b LR
background contribution spread over to: e
energy spectrum
= possible solution: combined training ! . . . . .

0) 1 2 3 4 5 6

E,., GeV
Primary + background neutrons
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