MPD performance in the fixed target mode (Xe (T = 0.5, 2.5, 4.0 GeV/n) + W wire at z = -85 cm)

V. Riabov

Kinematics

- Xe (T = 0.5 GeV/n) + W:
 - ✓ $\sqrt{s_{NN}} = 2.1 \text{ GeV}$ ✓ $y_{CMS} = 0.50$
- Xe (T = 2.5 GeV/n) + W: $\checkmark \sqrt{s_{NN}} = 2.9 \text{ GeV}$ $\checkmark y_{CMS} = 0.99$
- Xe (T = 4.0 GeV/n) + W: $\checkmark \sqrt{s_{NN}} = 3.3 \text{ GeV}$ $\checkmark y_{CMS} = 1.17$

Trigger system: DCM-QGSM-SMM + Geant4

FFD trigger performance

T = 2.5 GeV/n

T = 0.5 GeV/n

relativistic particles

FFD trigger efficiency vs. impact parameter FFD trigger efficiency vs. impact parameter FFD trigger efficiency vs. impact parameter Trig.eff. Trig.eff. Trig.eff. 0.8 0.8 >=1 channels per side channels per side >=1 channels per side >=2 channels per side annels per side >=2 channels per side 0.6 0.6 0.6 >=3 channels per side nannels per side >=3 channels per side >=4 channels per side >=4 channels per side 0.4 0.4 0.2 0.2 14 b (fm) 10 12 10 12 14 b (fm) 10 12 14 b (fm) Eff = 12, 22, 35, 55% Eff = 73, 78, 83, 88% Eff = 78, 82, 85, 89% Vertex resolution Vertex resolution Vertex resolution Resolution (cm) Resolution (cm) Resolution 1200 25 100(200 -20 -20 20 800 150 15 600 100 -60 -6010 400 -80 -80 -80 200 -100<u></u>∟ -100 -100^L 14 16 b {fm) 16 b {fm) 10 14 16 b {fm) Resolution ~ 10 cm Resolution ~ 20 cm Resolution $\sim 2 \text{ cm}$ Noticeable centrality bias \rightarrow deficiency Huge centrality bias \rightarrow no ultra Minimum centrality bias of ultra relativistic particles in

peripheral collisions

T = 4.0 GeV/n

FHCAL trigger performance

Noticeable centrality bias \rightarrow slow particles

Some centrality bias ~ resolution

TOF trigger performance

Eff = 75, 80, 85, 93%

T = 2.5 GeV/n

Eff = 89, 91, 94, 97%

Eff = 91, 93, 95, 98%

TOF trigger efficiency vs. impact parameter

Summary for trigger system

- Trigger configuration in the FXT mode:
 - ✓ FHCAL will need extra studies to be included in the trigger decision \rightarrow do we have time for this???
 - ✓ TOF alone does not provide (online) vertex and T0 measurements \rightarrow lots of beam-gas-pipe background ???
 - ✓ Most probably FFD will be the main trigger detector \rightarrow rely on FFD performance
 - ✓ To reject background from the photo-production and electromagnetic dissociation, FFD and FHCAL trigger decisions should be used in coincidence with TOF → (FFD && TOF), (FHCAL && TOF)
- Trigger performance for physics & technical runs:
 - ✓ best performance at T = 4.0 GeV → good for physics
 - ✓ acceptable performance at T = 2.5 GeV → potentially good for physics
 - ✓ poor performance at T = 0.5 GeV → only performance studies and technical run, will see 10-30% of collisions

Acceptance: UrQMD (mean field) + Geant4

$T = 0.5 \text{ GeV/n: } \pi/\text{K/p}$

• Basic track selections: $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

• That's it $\ensuremath{\mathfrak{S}}$ No other particles are produced in measurable numbers, even kaons are missing

T = 2.5 GeV/n: $\pi/K/p$

• Basic track selections: $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

T = 2.5 GeV/n: Ks/ K*(892)/ Λ

• Basic track selections: $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

T = 4.0 GeV/n: π/K/p

• Basic track selections: $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

$T = 4.0 \text{ GeV/n: Ks/ K*(892)/ }\Lambda$

• Basic track selections: $N_{hits} > 10$; DCA < 2 cm; Primary particles ($R_{production} < 1$ cm)

Particle yields per event

• UrQMD v.3.4, mean-field configuration, minbias Xe+W, $|y_{CMS}| < 0.5$

Yield / event	T = 0.5 GeV/n	T = 2.5 GeV/n	T = 4.0 GeV/n
Pions	5.0e-001	6.9e+000	1.1e+001
Kaons	1.3e-005	1.0e-001	5.6e-001
Protons	8.1e+001	1.9e+001	1.5e+001
Lambda	-	1.4e-001	6.6e-001
Ks	-	6.3e-002	3.2e-001
Xi	-	2.7e-004	5.2e-003
Phi(1020)	-	1.5e-003	1.7e-002
Kst(892)	-	1.1e-002	1.3e-001
Lambda(1520)	-	1.1e-002	1.3e-001
Sigma(1395)	-	1.4e-002	1.1e-001

- For number of reconstructed particles, the numbers must be multiplied by reconstruction efficiency (~ 50% for charged hadrons, ~ 20% for resonances, ~ 10% for hyperons)
- Estimations may vary with event generators

Summary acceptances and physics

- The smaller the energy the better the acceptance (smaller y_{CMS})
- T = 0.5 GeV:
 - ✓ no NICA-type physics with phase transition(s), domain of pure hadronic cascade and mean-field models
 - \checkmark only pions and protons are produced, no kaons in measurable quantities, no hyperons, etc.
- T = 2.5 GeV:
 - ✓ threshold energy for NICA-type physics, $\sqrt{s_{NN}} = 2.9$ GeV is close to STAR-FXT point of $\sqrt{s_{NN}} = 3$. GeV
 - \checkmark wide variety of measurable identified hadrons (pi/K/p + resonances + hyperons) and physics signals
 - \checkmark good detector acceptance at midrapidity
 - ✓ Requires larger integrated luminosity compared to higher collision energies (cross sections are smaller)
- T = 4.0 GeV:
 - ✓ threshold energy for NICA-type physics, $\sqrt{s_{NN}} = 3.3$ GeV is close to STAR-FXT point of $\sqrt{s_{NN}} = 3$. GeV
 - \checkmark wide variety of measurable identified hadrons (pi/K/p + resonances + hyperons) and physics signals
 - \checkmark limited detector acceptance may be a problem for some of the signals to measure

Field: full vs. reduced

Generated, TPC and TPC-TOF reconstructed, $|y_{CMS}| < 0.5$

T = 0.5 GeV; MF = 0.5 T vs. MF = 0.2 T

MF = 0.5 T

MF = 0.2 T

Summary for field

- No clear necessity for reduced magnetic field running:
 - ✓ Only T = 2.5 and 4.0 GeV are suitable for physics
 → fractions of reconstructed particles at midrapidity are similar ~ 70 (35) % for pions and protons
 - ✓ T = 0.5 GeV is good only for detector studies
 → most of produced particles are pions, which are detected with comparable efficiency of ~ 70 (40) %
 - ✓ Reduced field will improve acceptance for lower-pT tracks but will reduce momentum resolution
 → not a fair trade???

Conclusions

- T < 1.0 GeV/n невозможно делать физику из-за низкой эффективности триггера
- T = 2.5/n и 4 ГэВ/n потенциально походят для физики
- Ожидаемый ран будет для MPD техническим, при T < 1.0 GeV/n исключительно техническим, но не бесполезным
- Максимальные ожидаемые результаты запись нескольких тысяч событий, соответствующих реальным столкновениям с частично включенными детекторами:
 - ✓ Демонстрация возможности наблюдения столкновений
 - ✓ Демонстрация возможности восстановления вершины (положения проволоки)
 - ✓ Демонстрация возможности восстановления треков, dE/dx
 - ✓ Демонстрация возможностей TOF, beta/mass2
 - ✓ Демонстрация загрузки калориметра, пи0 пик оптимистично

BACKUP