

Reconstruction of photons and neutral mesons with MPD

Yonghong Wang Shandong University MPD collaboration

Outline

- 1、Dataset
- 2、Photon selection in ECal
- 3、Photon selection in PCM(Photon Conversion Method)
- 4. Meson reconstruction via invariant mass
- 5、Comparison of reconstructed and generated
- 6、Summary

Dataset

- Collision system: Bi+Bi @9.2GeV
- Event generator: UrQMD
- Production: 50M events <u>https://mpdforum.jinr.ru/t/request-8-input-request-25/622</u>
- Analysis Train (wagon pairGG): <u>https://mpdforum.jinr.ru/t/request-25-general-purpose-50m-urqmd-bibi-9-2-second-collaboration-paper/455</u>

Event cut:

Primary vertex of event reconstructed and vertex_z cut < |100| cm

Photon selection in ECAL

Photon cluster selection in ECAL:

- 1、N_hit_tower>=2
- 2、reconstructed energy>=75MeV
- 3、Chi2<=4(This variable says how close the cluster shape to the one expected for electromagnetic shower.)

4 tof<2ns(tof of the cluster, assumed ECAL time resolution dt = 0.5 ns)

5、 charged particle veto cut (no matching to tracks reconstructed in the TPC and extrapolated to the ECAL)

Purity: The photon purity is the ratio of the photon after the cut to all the particles after the cut

Photon energy resolution in ECAL

The $(E_rec-E_gen)/E_gen vs. E_gen distribution is projected onto the Y-axis at intervals of 0.1GeV on E_gen, and the distribution of its projection is fitted with a Gaussian function, the Gaussian fitted sigma as a resolution of energy.$

Photon selection in PCM

The cuts of single $e^+(e^-)$ track for PCM:

1、nhit>10 in TPC

 $2 \ \ p_T > 50 \ MeV/c$

3、TPC 2-sigma e-ID or TPC 2-sigma eID + 3-sigma TOF e-ID in case of track matching to the TOF

e^+e^- pair's variables for PCM:

- 1, dca: distance of closest approach for e^+e^- tracks
- 2、Chi2: quality of the secondary vertex reconstruction
- 3, angle: between $\vec{r} \& \vec{p}$
- 4, decay length: the distance from primary vertex to V0 vertex
- 5, mass: the mass of mother particle of e^+e^- pair

e^+e^- pairs selection for PCM

The upper are distributions of true conversion e^+e^- pairs.

The black dotted curves as 2*sigma selection, where sigma is either a Gaussian width (for distributions with Gaussian shape) or a range, which accounts for 65% of the total signal (2*sigma accounts for ~ 95% of the total signal).

Photon purity and efficiency in PCM

The photon purity obtained by PCM is higher than 80% at $p_T < 2$ GeV/c.

Reconstruction via invariant mass

A clear excess is visible in distributions close to the nominal meson mass of 135 MeV/c² for the π^0

Reconstruction via invariant mass

A clear excess is visible in distributions close to the 548 MeV/c² for the η meson.

$M_{\gamma\gamma}$ distributions for different p_T bins(ECAL)

A clear excess is visible in distribution at different p_T bins close to the meson mass of 135 MeV/c² for the π_{11}^0 .

Comparison of π^0 reconstructed and generated

0.03

-O- FX-BG y π^0 -ve⁺e 0.025 FX-BG γe⁺e π⁰-e⁺e⁻e⁺e FX-BG e⁺e⁻e⁺e⁻ 0.02 0.015 0.01 0.005 -0.0054.5 p_(GeV/c) 0.5 1.5 2 2.5 3 3.5

Width

— – π°-γγ

The fit_mean and fit_sigma obtained from the FX-BG are close to the photons come from true π^0 .

Comparison of π^0 reconstructed and generated

The reconstructed is relatively close to generated for π^0 in certain p_T ranges.

Comparison of η reconstructed and generated

The fit_mean and fit_sigma obtained from the FX-BG in certain p_T ranges are close to the photons come from true η .

Comparison of η reconstructed and generated

The eta reconstructed results are consistent with generated, and need to optimize.

- 1. Signals for π^0 are observed in 0.1<pT <4 GeV/c.
- 2. A hint of signals for η is observed (need extra work and cut optimization).
- 3. The first-look results for reconstructed π^0/η are consistent with the generated spectra, fine tuning of fits is still required.
- 4. The centrality dependent study is ongoing.

- 1. Signals for π^0 are observed in 0.1<pT <4 GeV/c.
- 2. A hint of signals for η is observed (need extra work and cut optimization).
- 3. The first-look results for reconstructed π^0/η are consistent with the generated spectra, fine tuning of fits is still required.
- 4. The centrality dependent study is ongoing.

Thanks!

Backup

pairs cuts for PCM *e*⁺*e*⁻

Use 65% parameterization, mean=0, and the red line in the UN pairs diagram is $2^*\sigma$. The sigma is calculated by calculate the counts account for 65% of all disth (0-1.5)

range.

Chi ga sigma Chi2 p_un Chi2 p_un χ^2 / ndf 1.104 / 4 Prob p0 0.04389 ± 0.1882 1.253 ± 0.9153 -1.581 ± 1.359 0.742 ± 0.7714 -0.09071 ± 0.1474 p_(GeV/

After disth(DCA) cut, using (Chi2 0-4 range) integral* 65% parameterization, mean=0, and the red line in the UN pairs diagram is $2^*\sigma$. I choose pT>1.25, sigma is constant.

1.993

0.2276

1.465

The DCA, Chi2, angle and decay_mass cuts are added in a specific order to select e^+e^- pairs for PCM.

$M_{\gamma\gamma}$ distributions for different p_T bins(ECAL)

A clear excess is visible in all distributions close to the meson mass of 135 MeV/c² for the π^0 .

$M_{\gamma\gamma}$ distributions for all pT bins(PCM)

A clear excess is visible in $0.3 < p_T < 2.4 \text{GeV/c}$ close to the meson mass of 135 MeV/c² for the π^0 .

$M_{\gamma\gamma}$ distributions for all pT bins(Hybrid)

A clear excess is visible in $0.1 < p_T < 3$ GeV/c close to the meson mass of 135 MeV/c² for the π^0 .

$M_{\gamma\gamma}$ distributions for all pT bins(ECAL)

A clear excess is visible in $p_T < 2.7 \text{GeV/c}$ close to the meson mass of 548 MeV/c² for the η .

$M_{\gamma\gamma}$ distributions for all pT bins(Hybrid)

A excess is visible in $0.3 < p_T < 2.7 \text{GeV/c}$ close to the meson mass of 548 MeV/c² for the η in hybrid method.