

Office Island BBQ

Home

Дом культуры «Мир»

1932-2014

Юбилейная фотовыставка, посвященная памяти Ю.А.Туманова

> Once the Standard Model of Particle Phys. was ignored

NOVEMBER 1974 \bullet $\mathbb{Z}_{e} \rightarrow e^{+} e^{-} + \dots$ 80 $p + Be \rightarrow e' + e' + X$ Rate (relative Einheiten) 60 S 40 20 2.5 2.75 3.0 3.25 3.5 M GeV

Abbildung 5.10 Die Ergebnisse von Aubert et al. (1974) zeigen die schmale J/ψ -Resonanz in der Verteilung der invarianten Masse des e^+e^- -Paars, das in inklusiven Reaktionen von Protonen an einem Berylliumtarget erzeugt wurde. Dies Experiment wurde am 28 GeV-AGS des Brockhaven National Labousteum summführt

Aubert et al.

B

XVIII International Conference on High-Energy Physics, 1976

Organizing Committee

N.N.Bogolubov - Chairman V.P.Dzhelepov - Vice-Chairman A.N.Tavkhelidze - Vice-Chairman V.G.Kadyshevsky - Scientific Secretary N.S.Amaglobeli M.A.Markov E.L.Andronikashvili E.M.Nikitin A.Ts.Amatuni B.M.Pontecorvo A.M.Baldin R.G.Salukvadze A.N.Skrinsky D.I.Blokhintsev G.A.Chilashvili L.D.Soloviev O.I.Chkhikvishvili O.I.Sumbaev I.V.Chuvilo I.G.Timerbulatov E.L.Feinberg A.A.Vasiliev O.I.Kavtiashvili V.A.Vasiliev V.N.Kachibaya D.V.Volkov V.F.Kuleshov V.A.Yarba G.P.Zedginidze

Tbilisi 1976

HKEGB mechanism Higgs Boson

References !!

Tbilisi 1976

S

S

Цветные кварки, «открытые» АЛЬВАРО ДЕ РУХУЛА в его раппортерском докладе на XVIII Международной конференции по физике высоких энергий.

(Тбилиси, июль 1976 г.)

Who invented color?

Three identical quarks cannot form an antisymmetric S-state. In order to realize an antisymmetric orbital S-state, it is necessary for the quark to have an additional quantum number.

— B. V. Struminsky, <u>JINR</u>-Preprint P-1939, Dubna, Submitted on January 7, 1965

Boris Struminsky was a PhD student of <u>Nikolay Bogolyubov</u>. The problem considered in this preprint was suggested by Bogolyubov, who advised Boris Struminsky in this research.^[15] In the beginning of 1965, <u>Nikolay Bogolyubov</u>, <u>Boris Struminsky</u> and <u>Albert Tavkhelidze</u> wrote a preprint with a more detailed discussion of the additional УДК 539.12.01

THE QUANTUM NUMBER *COLOR*, *COLORED QUARKS* AND QCD (Dedicated to the 40th anniversary of the discovery of *color*) *V.A. Matveev, A. N. Tavkhelidze*

Institute of Nuclear Research of the Russian Academy of Sciences, Moscow

Roy Schwitters at Tbilisi Goldhaber et al. Phys.Rev.Lett.37.255

FIG. 2. Recoil-mass spectra for combinations in the $K\pi$ and $K3\pi$ peaks. Smooth curves are estimates of the background obtained from combinations whose invariant masses are on either side of the peak mass region. (a) $K^{\pm}\pi^{\mp}$, peak mass region of 1.84 to 1.90 GeV/ c^2 and background mass regions of 1.70 to 1.82 GeV/ c^2 and 1.92 to 2.04 GeV/ c^2 . (b) $K^{\pm}\pi^{\mp}\pi^{\pm}\pi^{\mp}$, peak mass region of 1.84 to 1.88 GeV/ c^2 and background mass regions of 1.74 to 1.82 GeV/ c^2 and 1.90 to 1.98 GeV/ c^2 .

They thought it may be the decays of charmed mesons but they did not understand their own data

DGG

DGG

BECAUSE D*- D~ MT 2 KINEMATICAL REFLECTIONS NEAR THRESHOLD FALSE RECOIL PEAKS IN HISSING MASS E ~ ETH FALSE BUMPS FROM D.D. et $\begin{cases} m_R \sim D_0 + n_0 \pm \epsilon [0, E - E_T] \end{cases}$ Do to ≈ D_{*} !!! (~2.0 GU) D.* K CATCH \mathbb{D}_{o} $\sim 90\%$ ON TOP OF REAL Dox et $M_R \sim D_{+} \pi_{+} \pm \epsilon$ ~ D n+ e D* ~ 90% CATCH

Ε R R 0 R 2

Vore on Никола́й Никола́евич Боголюбов 2

