

The Research and Development of MICA Chip

Le Xiao Central China Normal University

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

A 130 nm Bulk Silicon Process in China

Pixel Test Chip and Process Evaluation

MICA Chip and Test System

A 130 nm Bulk Silicon Process in China

Pixel Test Chip and Process Evaluation

MICA Chip and Test System

Advantages of MAPS:

- 1. It integrates sensors and readout circuits on the same chip;
- 2. It has low material buget
- 3. It has low cost
- 4. Low input capacitance ->It can achieve low power consumption

A 130 nm Bulk Silicon Process in China

Pixel Test Chip and Process Evaluation

MICA Chip and Test System

A 130 nm Bulk Silicon Process in China

Cross section of the process

130 nm bulk silicon process:

• We developed DPW together with the process factory

(*NW*, *PW*, *DNW*) -> (*NW*, *PW*, *DNW*, *DPW*)

- It supports 6 layers of metal
- It supports high resistance substrate

A 130 nm Bulk Silicon Process in China

Pixel Test Chip and Process Evaluation

MICA Chip and Test System

Pixel Test Chip Design

- We developed a pixel test chip based on the 130 nm bulk silicon process.
- It has three different pixel structures.
- Each pixel structure has a 4x4 matrix.

Test System for Process Evaluation

System Features:

- It has 16 channels ADC (sampling rate of 20MHz, 12 bits).
- It can provide 8 channels of analog voltage through DAC.
- It achieves data transmission and control through Gigabit Ethernet.
- It implements trigger in the firmware to reduce data.
- It has DDR3 cache (256M).

90Sr Test

Layout and picture of the Pixel test chip Test System

⁹⁰Sr Test (Low Resistance Substrate Chip)

• The event rate is 840 per hour.

⁹⁰Sr Test (High Resistance Substrate Chip, OV Bias)

- The most possible value (MPV) is a value of 8.5 ADCs
- The event rate is 2760 per hour.

90Sr Test (High Resistance Substrate Chip, -9V Bias)

- The most possible value (MPV) is a value of 12.5 ADCs
- The event rate is 11700 per hour.

⁹⁰Sr Test

⁹⁰ Sr test	 Low Resistance Substrate OV Bias 	 High Resistance Substrate OV Bias 	 High Resistance Substrate -9V Bias
MPV (ADC Value)	6.5	8.5	12
Event Rate (per hour)	840	2760	11700
Pixel Size		40u x 40u	

- The effect of high resistance substrate and negative bias is very obvious
- both for MPV and event rate.

A 130 nm Bulk Silicon Process in China

Pixel Test Chip and Process Evaluation

Image: MICA Chip and Test System

MICA Chip Layout

MICA Chip

MICA chip block diagram

- The 130 nm bulk silicon process
- Chip Size: 15 mm imes 30 mm
- Pixel Matrix: 512 imes 1024
- Pixel Size: 30.53 μ m imes 26.8 μ m
- Peaking time: < 1us
- Integration time: 5-10 us
- Parallel data port: 80 MHz I/O CMOS 3.3 V
- High speed serial data port: 1.1 Gb/s
- 8B10B encoder
- Configuration interface: SPI
- Two readout modes: trigger mode and continuous mode
- Zero compression readout (AERD)

Wafer of MICA Chip

Test System

- KC705 FPGA
- Mother board
- Bonding board
- Firmware
- Software
- Submodule Function test
- Submodule Performance test
- Full Chip Function test
- Full Chip Performance test

A 130 nm Bulk Silicon Process in China

Pixel Test Chip and Process Evaluation

MICA Chip and Test System

- A CMOS process suitable for MAPS was developed in cooperation with the foundry.
- Based on this CMOS process, a pixel test chip and a evaluation system are developed.
- The ⁹⁰Sr source was used to test the pixel test chip.
- The high resistance substrate and negative bias effect are significant on this process.
- ◆ A fully functional MAPS chip MICA was designed based on this process.
- We have received the MICA wafer and the test system is ready.
- Submodule functional testing is underway.

Спасибо!