

Modules and Supermodules Assembly Readiness at CCNU

Yaping Wang (王亚平)

Central China Normal University (华中师大)

- Introduction
- Modules and supermodules for the MPD ITS project
- Readiness of module and supermodule assembly at CCNU

MPD experiment at NICA

- The MPD enables a wide variety of physics measurements via high-luminosity scans in energy and system size with excellent PID and large acceptance
 - ✓ Order of phase transition and search for QCD critical point \rightarrow structure of QCD phase diagram
 - ✓ Hypernuclei and equation of state at high baryon densities \rightarrow inner structure of compact stars

ALICE ITS2 Project

- Monolithic Active Pixel Sensor (MAPS)
- **5** μ m impact parameter resolution
- 7 cylinders covering ~10 m² area
- Innermost radius: 23 mm

- Inner Barrel (IB): ~0.35% X₀
 - 3 Inner Layers (48 x 9-chip Staves)
- Outer Barrel (OB): ~0.8% X₀
 - 2 Outer Layers (90 x 14-HIC Staves)
 - 2 Middle Layers (54 x 8-HIC Staves)

MAPS-based Inner Tracking System (ITS) at MPD

The ITS detector will enable charm-hadron measurement and isolate collision vertex at high luminosity environment for the MPD experiments

- Based on the art-of-the-state MAPS technique
- Charm production in heavy ion collisions at NICA energies
- Clean measurement of (multi-)strange hadron production

)	Layer number	$egin{array}{c} {f Number of} \\ {f Staves} \\ {f (pcs)} \end{array}$	$f R_{min}\ (mm)$	\mathbf{R}_{max} (mm)	${f Length}\ ({f mm})$
	1-1	5	35.45	38.50	902.9
	1-2	5	40.45	43.16	902.9
	2-1	8	62.50	64.28	902.0
	2-2	8	66.45	68.13	902.9
	3-1	11	88.40	89.72	902.9
	3-2	11	92.33	93.55	902.9
	$4^{(*)}$	18	144.5	147.9	1526
	5	24	194.4	197.6	1526

The OB Module Structure

Middle Barrel (MB): 1 layer, consists of 12 staves

consists of 7 HICs Following the ALICE ITS2 HIC/Stave assembly & testing techniques/procedures, CCNU joined the ALICE ITS2 OB HIC mass production, and has constructed fully OB+MB HIC/Stave production lines.

MPD ITS OB HIC Production:

- 756 working HICs needed to assemble the OB
- 832 assembled HICs with 10% spare
- 1088 assembled HICs assuming a total yield of 76.5%
- 2 HIC production sites: CCNU/Wuhan, JINR/Dubna
- Target rate: 2~3 HICs per day per site in average, lasting for \sim 2 years with 2 sites (\sim 2 years)

MPD ITS OB Stave Production:

- 108 working HSs needed to assemble OB
- 133 assembled HSs (take into account spare and stave production yield)
- 2 stave production sites: CCNU/Wuhan, JINR/Dubna
- Target rate: 1 HS per week per site in average,
- lasting for more than 1 year with 2 sites (~1.5 years)

The OB HIC module assembly & testing @CCNU

> HIC module assembly and test: (1) Chip alignment positioning resolution within 5 μ m@3 σ ; (2) Automatic ultrasonic wire bonding with pull force larger than 7.5g; (3) Qualification and endurance testing

July 23-24, 2024

The OB HIC module assembly & testing @CCNU

1. Chip Alignment

2. FPC preparation & glue spreading

3. Pre-curing & fully curing

5 hours pre-curing, 24 hours fully curing

4. Wire-bonding

5. Peel & pull force test

6. Qualification & endurance testing

7. Assembled ITS OB HIC

The OB stave supermodule assembly & testing @CCNU

Stave module assembly and testing:

Custom assembly tooling & testing system from ALICE/ITS2
Coordinate Measuring Machine (CMM) used for components positioning & alignment

1. HIC tabs cut

2. HIC alignment on Cold Plate

soldering

6. Power bus installation

7. Boxed for testing and shipping

8. Outer barrel layer integration & testing

July 23-24, 2024

Readiness of infrastructure for MAPS detector

- \blacktriangleright Constructed ALICE ITS2 OB HIC module production line, module assembly R&D, and 20% module mass production (450 HICs with yield 85%, and chip positioning accuracy 5 μ m@3 σ)
- ITS2 stave supermodule production line is underconstruction, and a CMM machine installed. Technician trainings will be provided by ALICE ITS team
- Wire pull tester, peel force tester, and digital measurement microscope, etc., are equipped for module quality assurance

Chip-level module assembly & testing

@ ISO6 clean room

Seminar on the Chinese-Russian Cooperation - YPW

Stave-level module assembly & testing @ ISO7 clean room

Readiness of infrastructure for MAPS detector

Full production line of the ALICE ITS2 OB stave assembly & testing are available in CCNU

To MICA chips:

- 1. Depending on MICA chacteristics performance, define the module structure design
- 2. Al-metal layer FPC design and manufacture for IB, material budget < $0.35\% X_0$?
- 3. Mechanics materials (MJ55, MJ60, ...), design and production supermodules?
- 4. Power bus for OB supermodules?
- 5. Install and validate the stave assembly and test production line (both sides)
- 6.

Discussion – OB stave supermodule

Chip Power dissipation< 100mW/cm²

July 23-24, 2024

Discussion – OB stave supermodule

Summary

- The MAPS-based ITS detector has been proposed to be built for the MPD experiment with collaboration between China and NICA.
- Two construction sites for the ITS OB HIC/stave module assembly are prepared at CCNU/Wuhan and JINR/Dubna each, and the infrastructure is under construction as planed.
- The Chinese side is interested to the HIC module and stave supermodule production for the MPD ITS.

Thanks for your attention!

The IB Module Structure

Radius (mm) 37, 48, 60 Nr. Staves: 10x2, 16x2, 22x2 Nr. Chips/ layer: 180, 288, 396

Length in z (mm): 542 mm Nr. chips/ Stave: 9 Material thickness: ~0.35% X₀

Coolant Single-phase H₂O leak-less Pixel operational temperature < 30°C Pixel max temperature non-uniformity < 5°C Chip Power dissipation < 50mW/cm²

> IB HIC/Stave (MICA chips)

- 96 working HICs needed to assemble the IB barrel (double length of the IB staves of the ALICE ITS2)
- 106 assembled HICs with 10% spare
- 175 assembled HICs assuming a total yield of 61%
- 2 HIC production sites necessary: CCNU/Wuhan, JINR/Dubna
- Target rate: 1 HIC per day per site in average, lasting for a year with 2 sites

> IB HIC/Stave backup plan (ITS3)

- Wafer-scale pixel sensor chip with spatial resolution better than 3 um and a time resolution of the order of 200 ns
- R&D will be started at CERN since 2019, which could benefit the ITS of the NICA/MPD

July 23-24, 2024

Discussion – IB FPC

July 23-24, 2024

Discussion – IB HIC cabling

 Extensions are equipped with passive components and two DC-DC converters to stabilize the analogue and digital power supplies, respectively.

Discussion – IB stave supermodule

July 23-24, 2024

Discussion – IB stave supermodule

- High Thermal Conductive (HTC) material carries the heat to a pipe with coolant.
- \circ Pipes are embedded in the HTC material
- HTC= Carbon

Graphite foil

