Mu2E time calibration status, 2024-08-06

SPD Tracker group

August 6, 2024

Current calibration. TDO

Time calculation:
$$t = BCID \cdot 25ns - \left(\frac{TDO - TDO_{min}}{TDO_{max} - TDO_{min}}\right) \cdot 25ns$$
, where:

- BCID 12-bit 25ns counter, common for all channels, does not require calibration
- TDO 8-bit (?), correspond the time between threshold crossing and the first BCID clock after peak, need calibration
- Current TDO calibration: linear function with TDOmin as the moment of BCID change, and threshold TDO_{max} as the 25ns to BCID clock

Current calibration

VB and VM proposal

Mu2E time calibration status, 2024-08-06

TDO time calibration method

We want to calibrate *TDO* to ns: $t = BCID \cdot 25ns - f_{cal}(TDO, PDO)$, where: f_{cal} - calibration function There is a way to construct f_{cal} to have time not to the *BCID* clock itself, but to the some constant time prior *BCID* clock

Method:

- Select two channels (for example, channels 1 and 34)
- Send "straw-like" signals (see slide 19) to both channels:
 - Synchronious signals to both channels with delay in range [0, 75] ns
 - For channel 1: constant shape, constant charge
 - For channel 34: constant shape
- Select events with constant time to BCID clock by applying cut to channel 1 TDO cut: TDO_{ch1} = 105
- Check the channel 34 TDO for those events (see slide 6)
- **②** Check the calibrations for different $\triangle BCID$ (see slide 8)
- Construct BCID-independent TDO calibration (see slide 9)

BCID and TDO diffrence

TDO difference for signals with delay 0 TDO₃₄ - TDO₁ for 20 ns delay

• Blue: $\Delta BCID = 0$

• Brown: $\Delta BCID = 1$

BCID and TDO diffrence

• Blue: $\Delta BCID = 0$

• Brown: $\Delta BCID = 1$

• Blue: $\Delta BCID = 0$ • Brown: $\Delta BCID = 1$

- Blue: $\Delta BCID = 0$
- Brown: $\Delta BCID = 1$
- Green: $\Delta BCID = -1$

TDO fit

TDO fit examples, channel 34 signal charge 210fC

Seems. ADC has less then 8 bit. 5 bit?

Mu2E time calibration status, 2024-08-06

TDO fit

TDO fit examples, channel 34 signal charge 210fC

Seems, ADC has less then 8 bit. 5 bit?

Calibration resul

Calibration results, channel 34 signal charge 210fC

- We know, that each line (for each ΔBCID) shifted to the 1 BCID, which correspond to the TDO window size
- That mean, we can estimate *TDO* window as the difference between p0 (free parameter) between fit results (see right)
- Also, TDO dependence of the delay shoulde be independent of $\Delta BCID$, since the signal shape stays the same
- $\bullet\,$ So, we need to reconstruct that dependence for the events with the $\Delta BCID=0$

Results for different $\triangle BCID$ fitted with pol1

Mu2E time calibration status, 2024-08-06

Calibration results, channel 34 signal charge 210fC

tdo_{ch34} 250 200 150 100 TDO for A BCID == 0 50 for A BCID == 1 (fit 135 657 + -1 68607 • x) DO for A BCID == 2 (fit 179.867 + -1.72731 • x) TDO for A BCID == 3 (fit 218 923 + -1 66982 • x) n 70 0 20 30 40 50 60

• So, we need to reconstruct that dependence for the events with the $\Delta BCID = 0$

- That can be done by:
 - Or shifting all points left to $25 \cdot \Delta BCID$ ns
 - Or shifting all points down to $TDO_{window} \cdot \Delta BCID$
- The global fit can be estimated as mean *pol1* between all fitted dependences ?

delay, ns

Results for different $\triangle BCID$ fitted with pol1 Mean TDO in channel 34 for TDO_{ab1} ∈ [105, 105] (210fC)

Calibration resul

Calibration results, channel 34 signal charge 210fC

NOT ACTUAL. See page 10

Results after shift down (for events with $\Delta BCID = 0$)

Mean TDO in channel 34 for TDO ______ ∈ [105, 105] -- shifted (210fC)

- The method "shifting all points down to $\textit{TDO}_{window} \cdot \Delta\textit{BCID}"$ was used
- The global fit can estimated as mean *pol1* between all fitted dependences

Calibration resul

Calibration results, channel 34 signal charge 210fC

- $\bullet~$ The method "shifting all points left to $25\cdot \Delta BCID$ ns" was used
- The global fit can be done *pol*1 from all points **Fit result**

Results after shift left (for events with $\Delta BCID = 0$ **)**

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] -- shifted anotwer way (210fC)

Charge dependence

Channel 34 TDO for different charge

- There is a dependence for the signals with charge lower 200fC (time walk)
- No significant dependence for "high" signals (above 350 fC)

Results for channel 34 signal with charge 210fC

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (210fC)

Results for channel 34 signal with charge 280fC

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (280fC)

Results for channel 34 signal with charge 490fC

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (490fC)

Results for channel 34 signal with charge 560fC

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (560fC)

Results for channel 34 signal with charge 210fC

Results for channel 34 signal with charge 280fC

Results for channel 34 signal with charge 490fC

Results for channel 34 signal with charge 560fC

Charge dependence – small charges

Results for channel 34 signal with charge 210fC

Results for channel 34 signal with charge 70fC

pol1 fit results for different charges

Charge	р0	p1
70 fC	89.08	-1.56
210 fC	93.53	-1.69
280 fC	94.04	-1.68
490 fC	103.7	-1.37
560 fC	97.8	-1.59

Backup slides

Test signal examples

Straw-like

- High level: 0
- Low level: variable
- \bullet Width: 100 μs
- Rise edge: 2.5 ns
- Fall edge: 900 μs
- Output: inverted

- High level: 0
- Low level: variable (-100 mV / -700 mV)
- Width: 100 ns
- Rise edge: 2.5 ns
- Fall edge: 2.5 ns
- Output: inverted

BCID and TDO diffrence

TDO difference for signals with delay 0 TDO₃₄ - TDO₁ for 20 ns delay

• Blue: $\Delta BCID = 0$

• Brown: $\Delta BCID = 1$

BCID and TDO diffrence

TDO difference for signals with delay 10 TDO₃₄ - TDO₁ for 10 ns delay

• Brown: $\Delta BCID = 1$

BCID and TDO diffrence

TDO difference for signals with delay 20 TDO₃₄ - TDO₁ for 0 ns delay

- Blue: $\Delta BCID = 0$
- Brown: $\Delta BCID = 1$
- Green: $\Delta BCID = -1$

PDO for 3mV/fC, 25ns

