

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Update on di-electron analysis

Sudhir Pandurang Rode, Itzhak Tserruya

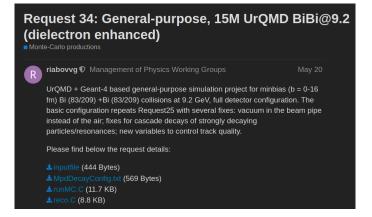
August 20, 2024

MPD Cross-PWG meeting

Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

August 20, 2024 1 / 23


ELE NOR

A B < A B </p>

- New production dedicated to di-electrons: Request 34
- Comparison with Request 25 results
- Conclusions and Outlook

<<p>A 目 > A 目 > A 目 > 目 = のQQ

Request 34

• New production dedicated to di-electrons \rightarrow enhanced branching ratios of dielectron sources.

Sudhir Pandurang Rode, Itzhak Tserruya

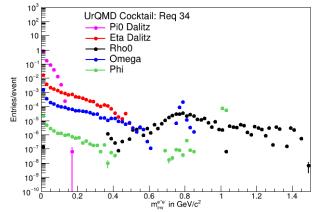
▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

What has changed in 34 with respect to 25?

- Changes in the MPDROOT
 - Beam pipe without air is used.
 - Conversions inside beam pipe due to malfunction with the pythia decayer is fixed.
 - Issue of lost electrons is fixed.
 - New variables are introduced for better track quality, though not applied in the analysis at the moment.
 - The branching ratios of dielectrons 5 decay channels (ρ , ω and ϕ mesons) are enhanced by factor 20.
- Pointers regarding Request 25 (since last meeting) and Request 34 analyses.
 - Wider vetex cut |Vz| < 130 cm in both Request 25 and 34 analysis.
 - Use of parameterizations from PID wagons \rightarrow in both request 25 and 34 analysis.
 - $\bullet\,$ Same trained MLP algotrithm is used in Request 25 and 34 \to new separate algorithms in progress.

▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Train: Request 34

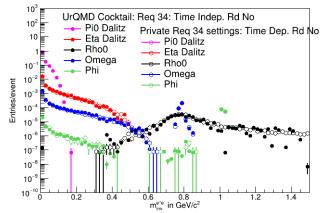


• New official train on Request 34 production \rightarrow found an issue with dielectron cocktail shape.

Sudhir Pandurang Rode, Itzhak Tserruya

< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

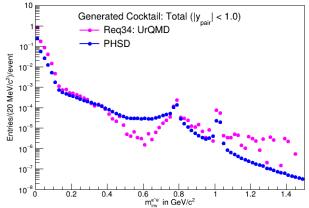
Cocktail shape UrQMD in Request 34



- "Ragged" shape of the di-electron cocktail.
- Random seeds in pythia8 decayer were kept time independent for dubugging \rightarrow now turned back to time dependent.

Sudhir Pandurang Rode, Itzhak Tserruya

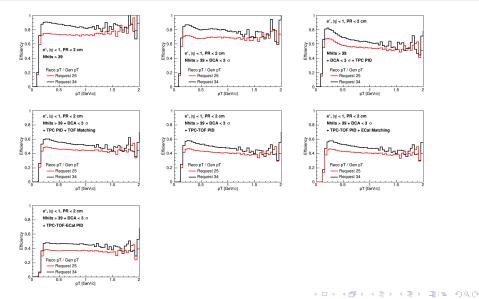
August 20, 2024 6 / 23


Cocktail shape UrQMD in Request 34

- As a result, "Ragged" shape of the di-electron cocktail can be restored.
- Should it be a huge concern since reweighted to PHSD shape?

ELE DOG

Cocktail shape UrQMD: Request 34



- Ratio of PHSD to UrQMD is used as weights to get PHSD shape.
- Apart from this, there were few bugs in my task, so, could not use train output.
- Ran my task privately and results are shown from next slides.

Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

Request 25 and 34: Efficiency using 1D cuts

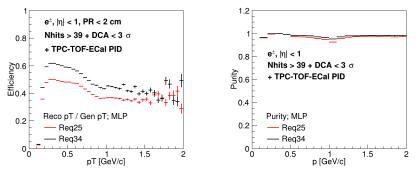
Update on di-electron analysis

August 20, 2024 9 / 23

Revised Analysis Strategy

- \Rightarrow Three electron pools:
- ightarrow Pool-1 for fully reconstructed tracks ^1 in fiducial area ($|\eta| <$ 0.7)
- ightarrow Pool-2 for fully reconstructed tracks in veto area 0.7 < $|\eta|$ < 1.0.
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC only.
 - $p_{\rm T} <= 110 \ {\rm MeV/c} \rightarrow$ not reaching the TOF.
 - $p_{\rm T} > 110 \ {\rm MeV/c} \rightarrow$ reaching the TOF.
 - Step 1 No further pairing (NFP): Tagging between Pool 1 and Pool 2.
 - Step 2 Close TPC cut (CTC): Tagging between Pool 1 and 3, and pairs with $M_{\rm inv} < 80 \text{ MeV}/c^2$ and opening angle < 10 degrees, removed.
 - Rest of the tracks with $p_{\rm T}$ > 200 MeV from Pool-1 are paired among themselves to build ULS and LS pair spectra.

¹TOF and ECal matched tracks identified in the TPC, TOF and ECal $\leftarrow \equiv \rightarrow \equiv \equiv \circ \circ \circ \circ$


Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

Track selection - 1D cuts analysis

- ightarrow Pool-1 for fully reconstructed tracks ^2 in fiducial area ($|\eta|$ < 0.7)
 - NHits > 39, DCA < 3 σ , TPC dEdX (p > 0.8, -1 to 2 σ), TOF Matching (d ϕ < 2 σ and dz < 2 σ), TOF (-2 to 2 σ), ECal PID (p dep. < E/p < 1.5 and m² < 2 σ , ECal Matching (< 3 σ)).
- $\rightarrow\,$ Pool-2 for fully reconstructed tracks in veto area 0.7 $<|\eta|<$ 1.0.
 - Same cuts.
- $\rightarrow\,$ Pool-3 with tracks reconstructed in TPC only.
 - $p_T <= 110 \text{ MeV/c} \rightarrow \text{not reaching the TOF} (|\eta| < 2.5, \text{ NHits} > 10, \text{ DCA} < 5\sigma, \text{ TPC dEdX} (-4 \text{ to } 4\sigma)).$
 - $p_T > 110 \text{ MeV/c} \rightarrow \text{reaching the TOF} (|\eta| < 2.5, \text{ NHits} > 10, \text{ DCA} < 5\sigma, \text{ TPC dEdX}$ (-3 to 3σ or -1 to 2σ), ECal PID (p dep. < E/p < 1.5 and m² < 2σ , ECal Matching (< 3σ)), TOF PID (if matched).
 - No further pairing (NFP): $M_{\rm inv} < 120 \text{ MeV}/c^2$.
 - Close TPC cut (CTC): $M_{\rm inv} < 80 \ {\rm MeV}/c^2$ and opening angle $< 10 \ {\rm or} \ 5^o$.

Request 25 and 34: Efficiency and Purity with MLP

- Efficiency was falling sharply after $p_{\rm T} > 1~{\rm GeV/c}$, therefore, 1D cuts were applied after that region.
- Larger efficiency and better purity in case of Request 34.
- Same MLP response cut in both Request 25 and 34.

Mass range: 0.2 < S/B - 1D Cuts (Fid. < 0.7): Request 25 (34), 33.2M (12.9M) $m_{inv}^{e^+e^-} < 1.5 \text{ GeV}/c^2$

	Bef. NFP	Aft. NFP	Aft. CTC ³	
		100		
Mass	-	120	80	\leftarrow 1D cuts
Angle	-	-	10 or 5	
U-B	$1671{\pm}560$	$1479{\pm}480$	1472±316 (2021)	\leftarrow Req 25
U-B	$1183{\pm}291$	$986{\pm}200$	912±173 (876)	\leftarrow Req 34
(U-B)/B (%)	$1.07 {\pm} 0.00$	$1.29{\pm}0.01$	3.00±0.02 (4.11)	
(U-B)/B (%)	$2.83{\pm}0.02$	$3.53{\pm}0.03$	6.30±0.07 (6.05)	
BFE	9	9	22 (41)	
BFE	16	19	28 (26)	
-				
	Bef.	Aft.	Aft. CTC	
	Bef. NFP	Aft. NFP	Aft. CTC	$\leftarrow MLP$
Mass (MeV)			Aft. CTC	$\leftarrow MLP$
Mass (MeV) Angle		NFP		_
()		NFP	80	\leftarrow MLP \leftarrow Req 25
Angle	NFP - -	NFP 120 -	80 10 or 5	_
Angle U-B	NFP - - 3146±752	NFP 120 - 2995±605	80 10 or 5 2710±407 (3395)	\leftarrow Req 25
Angle U-B U-B	NFP - - 3146±752 1331±377	NFP 120 - 2995±605 1386±308	80 10 or 5 2710±407 (3395) 1298±216 (1387)	\leftarrow Req 25
Angle U-B U-B (U-B)/B	NFP - 3146±752 1331±377 1.12±0.00	NFP 120 - 2995±605 1386±308 1.65±0.01	80 10 or 5 2710±407 (3395) 1298±216 (1387) 3.33±0.02 (4.17)	\leftarrow Req 25
Angle U-B U-B (U-B)/B (U-B)/B	NFP - 3146±752 1331±377 1.12±0.00 1.89±0.01	NFP 120 - 2995±605 1386±308 1.65±0.01 2.96±0.02	80 10 or 5 2710±407 (3395) 1298±216 (1387) 3.33±0.02 (4.17) 5.75±0.05 (6.14)	\leftarrow Req 25

B - Combinatorial background approximated by like sign pairs.

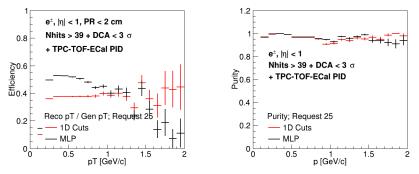
 3 different selection cuts on associated tracks with $p_{\mathrm{T}} < \mathrm{and} \gg 110 \, \mathrm{MeV}/\mathrm{e}$, and $\gg \mathrm{Er} \gg \mathrm{e} \gg \mathbb{e} \gg \mathrm{e} \gg \mathrm{e} \gg \mathrm{e} \gg \mathrm{e} \gg \mathrm{e} \gg \mathbb{e} \gg \mathrm{e} \gg \mathbb{e} \gg \mathrm{e} \gg \mathbb{e} \gg \mathbb{e}$

Sudhir Pandurang Rode, Itzhak Tserruya

S/B - 1D cuts and MLP (Fid. < 0.7): Req. 34, 12.9M

Bef Aft Aft. CTC NFP NFP Mass 120 80 -Angle 10 or 5 \leftarrow 1D cuts U 43033±207 32287±180 15392±124 \leftarrow MLP U 23889 ± 155 71830 + 268 48252 ± 220 B 41851±205 31187±177 14480±120 B 70499+266 46866+216 22590 ± 150 U-B 912±173 (876) 1183 + 2911100 + 252U-B 1331 ± 377 1386 ± 308 1298±216 (1387) (U-B)/B (%) 6.30 ± 0.07 (6.05) 2.83±0.02 $3.53 {\pm} 0.03$ (U-B)/B (%) 5.75 ± 0.05 (6.14) $1.89 {\pm} 0.01$ 2.96 ± 0.02 BFF 16 28 (26) 19 BFE 12 20 36(41)

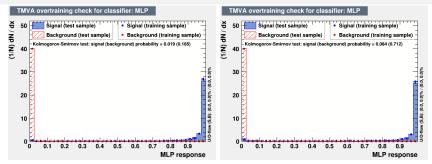
- B Combinatorial background approximated by like sign pairs.
- Use Machine learning improves the signal, i.e. Background Free Equivalent signal.
- S/B ratio is expected to stay unaffected.


Sudhir Pandurang Rode, Itzhak Tserruya

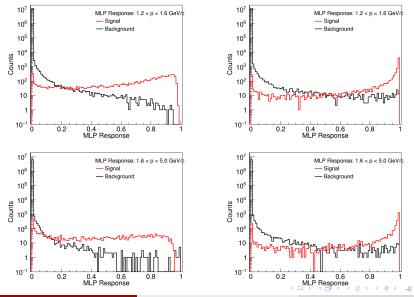
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆□ ■ ○ ○ ○

Mass range: 0.2 <

 $m_{inv}^{e^+e^-} < 1.5 \text{ GeV}/c^2$



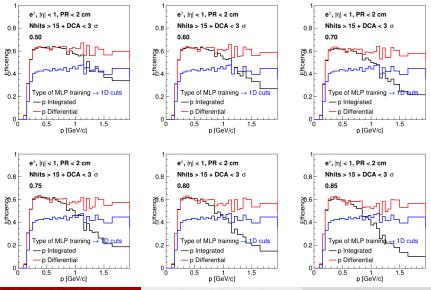
- Efficiency was falling sharply after $p_{\rm T}>1~{\rm GeV/c}
 ightarrow p-{\rm integrated}$ training of the sample.
- *p*-differential training can help in better signal and background separation.


ELE DOG

MLP: *p*-differential training

- *p* < 0.3 GeV/c.
- 0.3 < *p* < 0.6 GeV/c.
- 0.6 < p < 0.9 GeV/c.
- 0.9 < p < 1.2 GeV/c.
- 1.2
- 1.6 < p < 5.0 GeV/c.

MLP response: p-integrated vs p-differential training

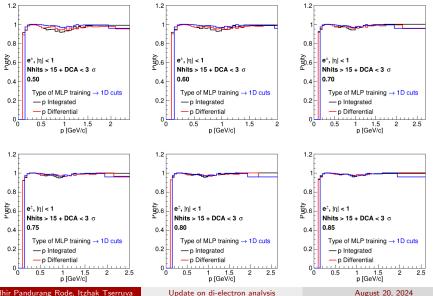


Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

August 20, 2024 17 / 23

Request 34 Efficiency: p Integrated vs Differential training

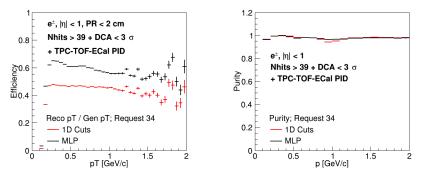


Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

August 20, 2024 18 / 23

Request 34 Purity: p Integrated vs Differential training



Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

19 / 23

Request 34: Efficiency and Purity

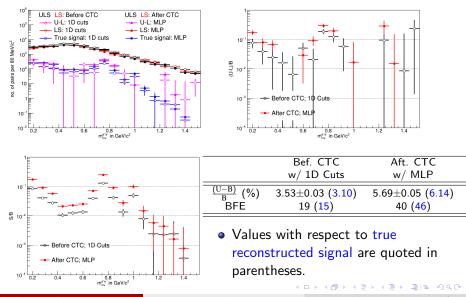
• Efficiency remains flat for all $p_{\rm T}$ in case of p-differential training.

Sudhir Pandurang Rode, Itzhak Tserruya

S/B - MLP (Fid. < 0.7): Request 34, (12.9M), (12.6M)

	Bef.	Aft.	Aft. CTC	-
	NFP	NFP		
Mass	-	120	80	\leftarrow MLP
Angle	-	-	10 or 5	
U	71830±268	48252±220	23889±155	$ \leftarrow p$ integrated
U	$81159{\pm}285$	$53254{\pm}231$	$26785{\pm}164$	$\leftarrow p$ differential
В	$70499{\pm}266$	$46866{\pm}216$	$22590{\pm}150$	
В	$79840{\pm}283$	$51843{\pm}228$	$25344{\pm}159$	
U-B	1331 ± 377	$1386{\pm}308$	$1298{\pm}216~(1387)$	-
U-B	$1319{\pm}401$	1412 ± 324	$1442{\pm}228~(1556)$	
(U-B)/B (%)	$1.89{\pm}0.01$	$2.96{\pm}0.02$	$5.75{\pm}0.05~(6.14)$	
(U-B)/B (%)	$1.65{\pm}0.01$	$2.72{\pm}0.02$	$5.69{\pm}0.05~(6.14)$	
BFE	12	20	36 (41)	
BFE	11	19	40 (46)	

- *p*-differential training helps in getting better signal.
- Flat MLP response cut in p-differential case.


▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Mass range: 0.2 <

 $m_{inv}^{e^+e^-} < 1.5 \text{ GeV}/c^2$

Request 34: ULS, LS and Signal

Mass range: $0.2 < m_{inv}^{e^+e^-} < 1.5 \text{ GeV}/c^2$

Sudhir Pandurang Rode, Itzhak Tserruya

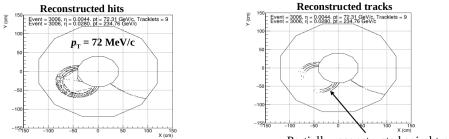
Update on di-electron analysis

August 20, 2024 22 / 23

Conclusions and Next steps

- Generated UrQMD cocktail shape has "ragged" features which can be fixed by using time-dependent random seeds in pythia8 decayer \rightarrow currently working with this feature.
- Changes in New Request 34 production helps in improving the signal and S/B.
- MLP assists in improving the single electron efficiency \rightarrow Still working with request 25 trained MLP algrothm for request 34.
- Momentum differential training of the MC sample helps improving the efficiency at high $p_{\rm T}$.
- Reconstructed signal is to be quantified \rightarrow low mass region (0.3 to 0.7 GeV/c) and ϕ meson peak.
- New and separate MLP training for request 34 is in progress.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

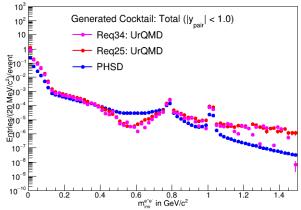

BACK-UP

Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

August 20, 2024 1/31

Quick recap

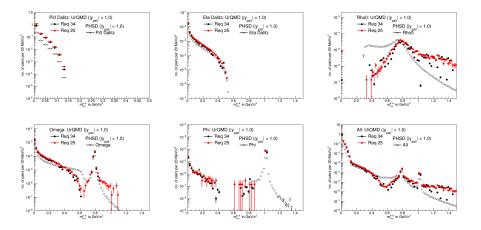


Partially reconstructed spiral track

- With current track reconstruction algorithm, low $p_{\rm T}$ tracks are not reconstructed properly even though full hit information is available in the detector for tracks that enter the TPC ($p_{\rm T} > \approx 30 \text{ MeV/c}$).
- Question is, in an ideal detector, what would be the maximum possible benefit in the combinatorial background (CB) reduction, if we were to detect these tracks.
- As per our principle study, potentially, there is about 5-8 factor improvement possible in CB rejection.

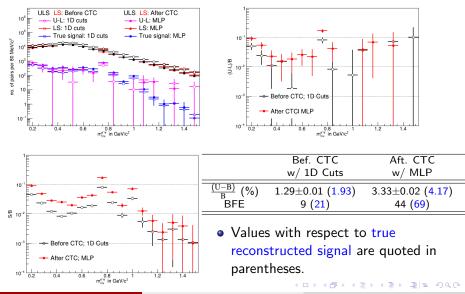
< ロ > < 同 > < 三 > < 三 > < 三 > < 三 > < 回 > < ○ < ○ </p>

Cocktail shape UrQMD and PHSD: Request 34 and 25


- Ratio of PHSD to UrQMD is used as weights to get PHSD shape.
- Apart from this, there were few bugs in my task, so, could not use train output.
- Ran my task privately and results are shown from next slides

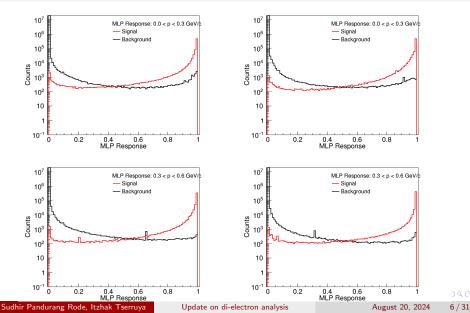
Sudhir Pandurang Rode, Itzhak Tserruya

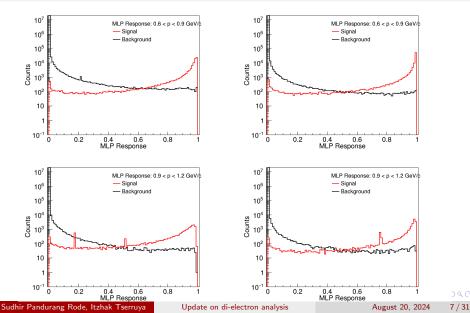
Update on di-electron analysis


August 20, 2024 3 / 31

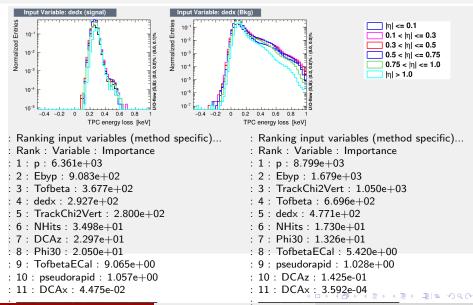
Cocktail shape UrQMD and PHSD: Request 34 and 25

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

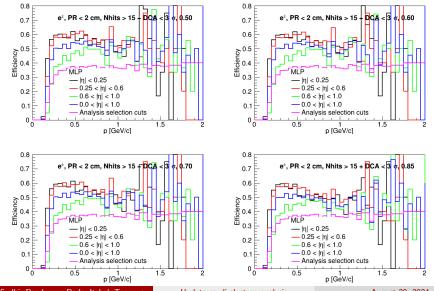

Request 25: ULS, LS and Signal


Sudhir Pandurang Rode, Itzhak Tserruya

August 20, 2024 5 / 31


MLP response: pT Integrated vs Differential training

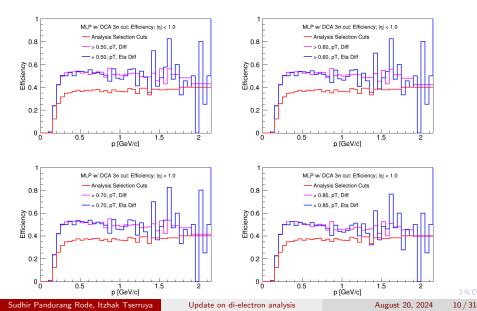
MLP response: pT Integrated vs Differential training


Request 34: dEdX

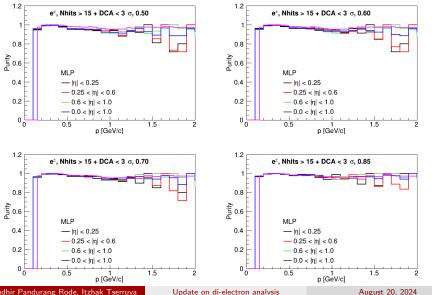
Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

Request 34: Eta and pT differential



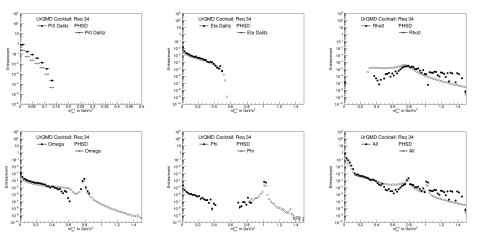
Sudhir Pandurang Rode, Itzhak Tserruya U


Update on di-electron analysis

August 20, 2024 9 / 31

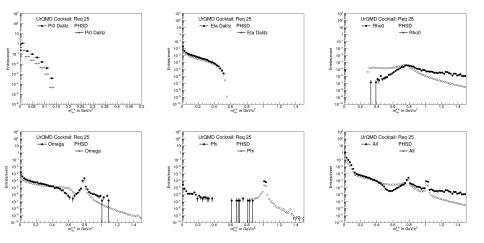
Request 34: Eta and pT differential

Request 34: Eta and pT differential



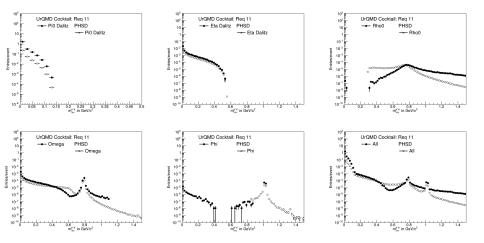
Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis


11/31

Cocktail shape UrQMD: Request 34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □


Cocktail shape UrQMD: Request 25

August 20, 2024 13 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Cocktail shape UrQMD: Request 11

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

S/B - 1D Cuts (Fid. < 0.7): Request 25 (34), 33.2M (12.9M)

	D (A.C.	AG CTC (
	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	Aft. CTC ($p_{\rm T}$
	NFP	NFP	<= 110 MeV)	> 110 MeV)
Mass cut (MeV/ c^2)	-	120	80	80
Opening angle	-	-	10	10
U	157453±397	$116046 {\pm} 341$	85349±292	70723±266
U	43033±207	32287 ± 180	$24310{\pm}156$	$20510{\pm}143$
В	$155782{\pm}395$	$114567 {\pm} 338$	83892±290	69267±263
В	$41851{\pm}205$	$31187 {\pm} 177$	$23199{\pm}152$	$19525{\pm}140$
U-B	$1671{\pm}560$	$1479{\pm}480$	$1458{\pm}411$	$1456{\pm}374$
U-B	$1183{\pm}291$	$1100{\pm}252$	1111 ± 218	986±200
(U-B)/B	$0.0107{\pm}0.0000$	$0.0129{\pm}0.0001$	$0.0174{\pm}0.0001$	$0.0210{\pm}0.0001$
(U-B)/B	$0.0283{\pm}0.0002$	$0.0353{\pm}0.0003$	$0.0479{\pm}0.0004$	$0.0505{\pm}0.0005$
BFE	9	9	13	15
BFE	16	19	26	24
S	2252	2215	2170	2073
S	992	967	941	900
S/B	0.0145	0.0193	0.0259	0.0299
S/B	0.0237	0.0310	0.0406	0.0461
BFE	16	21	28	31
BFE	12	15	19	20

• B - Combinatorial background approximated by like sign pairs.

Sudhir Pandurang Rode, Itzhak Tserruya

<□> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回< の< ○

S/B - 1D cuts and MLP (Fid. < 0.7): Req. 34, 12.9M

1D cuts MLP

	Bef.	Aft.	Aft. CTC (<i>p</i> _T	Aft. CTC (<i>p</i> _T	Res. CTC ($p_{\rm T}$
	NFP	NFP	<= 110 MeV)	> 110 MeV)	> 110 MeV)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U	43033±207	32287±180	24310±156	20510±143	15392±124
U	$71830{\pm}268$	48252±220	35727±189	$29328{\pm}171$	$23889 {\pm} 155$
В	$41851{\pm}205$	$31187{\pm}177$	$23199{\pm}152$	$19525{\pm}140$	$14480 {\pm} 120$
В	$70499 {\pm} 266$	$46866 {\pm} 216$	$34355{\pm}185$	$28114{\pm}168$	$22590{\pm}150$
U-B	$1183{\pm}291$	$1100{\pm}252$	1111 ± 218	$986{\pm}200$	912±173
U-B	1331 ± 377	$1386{\pm}308$	1372 ± 265	$1214{\pm}240$	$1298{\pm}216$
(U-B)/B	$0.0283{\pm}0.0002$	$0.0353{\pm}0.0003$	$0.0479{\pm}0.0004$	$0.0505{\pm}0.0005$	$0.0630{\pm}0.0007$
(U-B)/B	$0.0189{\pm}0.0001$	$0.0296{\pm}0.0002$	$0.0399{\pm}0.0003$	$0.0432{\pm}0.0004$	$0.0575{\pm}0.0005$
BFE	16	19	26	24	28
BFE	12	20	27	26	36
S	992	967	941	900	876
S	1586	1529	1489	1426	1387
S/B	0.0237	0.0310	0.0406	0.0461	0.0605
S/B	0.0225	0.0326	0.0433	0.0507	0.0614
BFE	12	15	19	20	26
BFE	18	25	32	35	41

• B - Combinatorial background approximated by like sign pairs.

Sudhir Pandurang Rode, Itzhak Tserruya

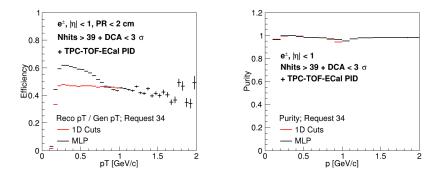
August 20, 2024 16 / 31

$p_{\rm T}$ integrated ML training

S/B - MLP (Fid. < 0.7): Request 34, (12.9M), (12.6M) p_T differential ML training

	Bef.	Aft.	Aft. CTC ($p_{\rm T}$	Aft. CTC ($p_{\rm T}$	Res. CTC ($p_{\rm T}$
	NFP	NFP	<= 110 MeV)	> 110 MeV)	> 110 MeV)
Mass	-	120	80	80	80
Angle	-	-	10	10	5
U	$71830{\pm}268$	48252±220	35727±189	$29328{\pm}171$	23889±155
U	$81159{\pm}285$	$53254{\pm}231$	$39587{\pm}199$	$32542{\pm}180$	$26785{\pm}164$
В	$70499 {\pm} 266$	$46866 {\pm} 216$	$34355{\pm}185$	$28114{\pm}168$	$22590{\pm}150$
В	$79840{\pm}283$	$51843 {\pm} 228$	$38106{\pm}195$	$31135{\pm}176$	$25344{\pm}159$
U-B	$1331{\pm}377$	$1386{\pm}308$	$1372{\pm}265$	$1214{\pm}240$	$1298{\pm}216$
U-B	$1319{\pm}401$	1412 ± 324	$1480{\pm}279$	$1407 {\pm} 252$	1442 ± 228
(U-B)/B	$0.0189{\pm}0.0001$	$0.0296{\pm}0.0002$	$0.0399{\pm}0.0003$	$0.0432{\pm}0.0004$	$0.0575{\pm}0.0005$
(U-B)/B	$0.0165{\pm}0.0001$	$0.0272{\pm}0.0002$	$0.0389{\pm}0.0003$	$0.0452{\pm}0.0004$	$0.0569{\pm}0.0005$
BFE	12	20	27	26	36
BFE	11	19	28	31	40
S	1586	1529	1489	1426	1387
S	1786	1712	1669	1599	1556
S/B	0.0225	0.0326	0.0433	0.0507	0.0614
S/B	0.0224	0.0330	0.0438	0.0514	0.0614
BFE	18	25	32	35	41
BFE	20	28	36	40	46

• B - Combinatorial background approximated by like sign pairs.

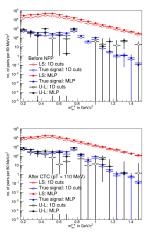

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

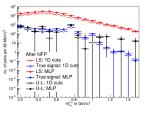
S/B - MLP (Fid. < 0.7): Request 25 (34), 33.1M (12.9M)

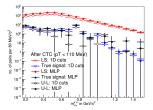
	Bef.	Aft.	Aft. CTC $(p_{\rm T})$	Aft. CTC (<i>p</i> _T	(<i>p</i> _T
	NFP	NFP	<= 110 MeV)	> 110 MeV)	> 110 MeV)
Mass (MeV)	-	120	80	80	80
Angle	-	-	10	10	5
U	$259058{\pm}509$	$167986{\pm}410$	121660 ± 349	97181±312	76650±277
U	$71830{\pm}268$	48252 ± 220	$35727 {\pm} 189$	$29328{\pm}171$	23889 ± 155
В	$256155{\pm}506$	$165384{\pm}407$	$118751 {\pm} 345$	$94511 {\pm} 307$	$74059{\pm}272$
В	$70499{\pm}266$	$46866 {\pm} 216$	$34355{\pm}185$	$28114{\pm}168$	$22590{\pm}150$
U-B	$2903{\pm}718$	2602 ± 577	$2909 {\pm} 490$	2670 ± 438	$2591{\pm}388$
U-B	$1331{\pm}377$	$1386{\pm}308$	$1372 {\pm} 265$	$1214{\pm}240$	$1298{\pm}216$
(U-B)/B	0.0113	0.0157	0.0245	0.0282	0.0350
(U-B)/B	0.0189	0.0296	0.0399	0.0432	0.0575
BFE	16	20	35	37	45
BFE	12	20	27	26	36
S	3377	3280	3206	3028	2970
S	1586	1529	1489	1426	1387
S/B	0.0132	0.0198	0.0270	0.0320	0.0401
S/B	0.0225	0.0326	0.0433	0.0507	0.0614
BFE	22	32	43	48	58
BFE	18	25	32	35	41

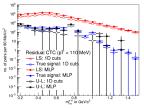
• B - Combinatorial background approximated by like sign pairs.

Request 34: Efficiency and Purity

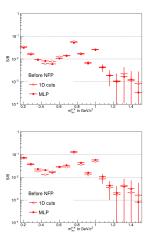

Sudhir Pandurang Rode, Itzhak Tserruya

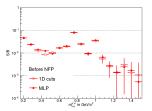

Update on di-electron analysis

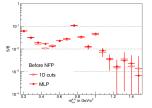

August 20, 2024 19/31

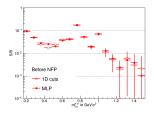

-

Req 25 with Req25 weights

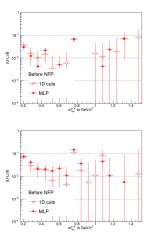


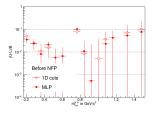


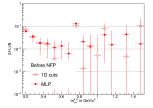

Sudhir Pandurang Rode, Itzhak Tserruya

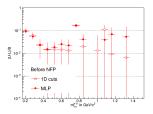

August 20, 2024 20 / 31

Req 25 with Req25 weights

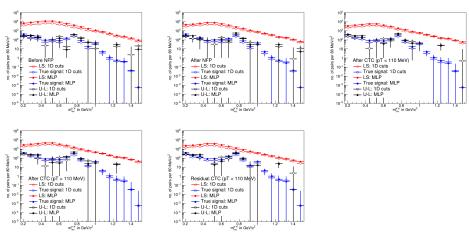





Sudhir Pandurang Rode, Itzhak Tserruya

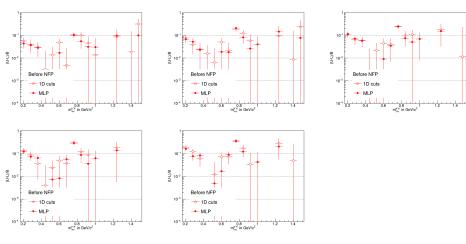

August 20, 2024 21 / 31

Req 25 with Req25 weights

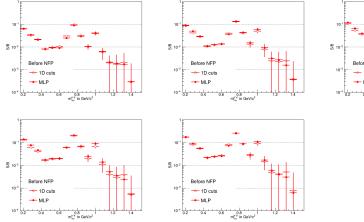


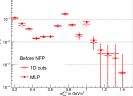
Sudhir Pandurang Rode, Itzhak Tserruya

August 20, 2024 22 / 31


Req 34 with $p_{\rm T}$ -integrated MLP training

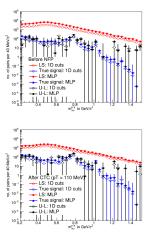
Sudhir Pandurang Rode, Itzhak Tserruya

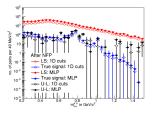

August 20, 2024 23 / 31

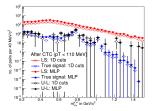

Req 34 with p_{T} -integrated MLP training

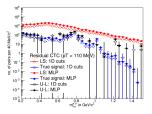
August 20, 2024 24 / 31

Req 34 with p_{T} -integrated MLP training

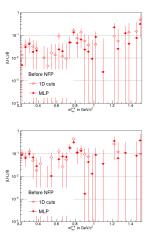


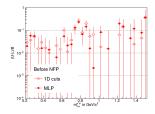

Sudhir Pandurang Rode, Itzhak Tserruya

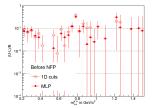

Update on di-electron analysis

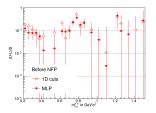

August 20, 2024 25 / 31

Req 34 with $p_{\rm T}$ -differential MLP training

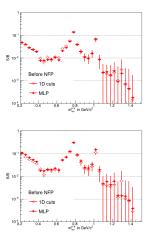


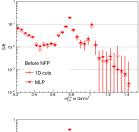

Sudhir Pandurang Rode, Itzhak Tserruya

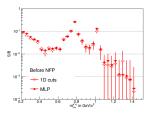

August 20, 2024 26 / 31


▲□▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨヨ ののべ

Req 34 with $p_{\rm T}$ -differential MLP training

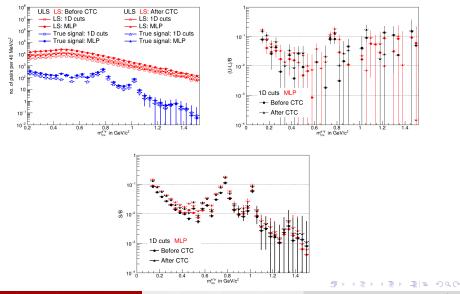





August 20, 2024 27 / 31

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

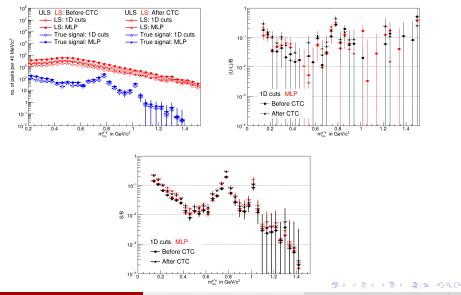
Req 34 with $p_{\rm T}$ -differential MLP training



Sudhir Pandurang Rode, Itzhak Tserruya

August 20, 2024 28 / 31

Request 25: Request 25 weights for cocktail

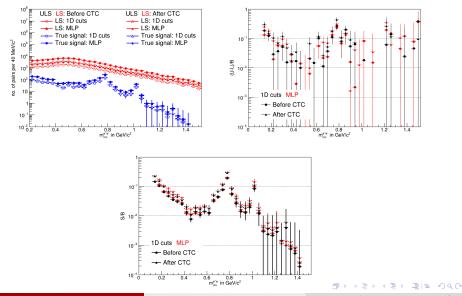


Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

August 20, 2024 29 / 31

Request 34: Request 34 weights for cocktail



Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

August 20, 2024 30 / 31

Request 34: Request 34 weights for cocktail

Sudhir Pandurang Rode, Itzhak Tserruya

Update on di-electron analysis

August 20, 2024 31 / 31