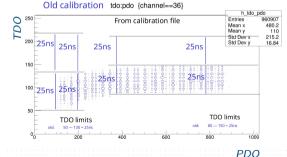
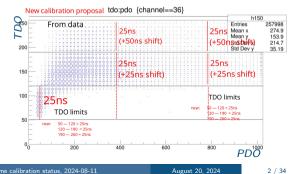
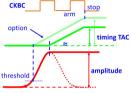
Mu2E time calibration status, 2024-08-11


SPD Tracker group

August 20, 2024

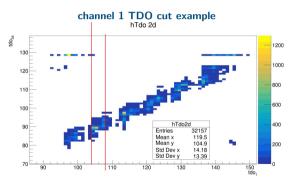

Current calibration. TDO

Time calculation:
$$t = BCID \cdot 25ns - \left(\frac{TDO - TDO_{min}}{TDO_{max} - TDO_{min}}\right) \cdot 25ns$$
, where:

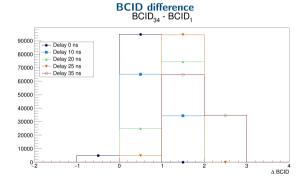

- BCID 12-bit 25ns counter, common for all channels, does not require calibration
- TDO 8-bit (?), correspond the time between threshold crossing and the first BCID clock after peak, need calibration
- Current TDO calibration: linear function with TDO_{min} as the moment of BCID change, and threshold TDO_{max} as the 25ns to BCID clock

Current calibration

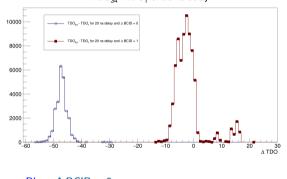
VB and VM proposal



TDO time calibration method


We want to calibrate TDO to ns: $t = BCID \cdot 25ns - f_{cal}(TDO, PDO)$, where: f_{cal} - calibration function There is a way to construct f_{cal} to have time not to the BCID clock itself, but to the some constant time prior BCID clock

Method:

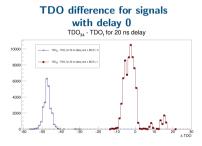

- Select two channels (for example, channels 1 and 34)
- Send "straw-like" signals (see slide 28) to both channels:
 - Synchronious signals to both channels with delay in range [0, 75] ns
 - For channel 1: constant shape, constant charge
 - For channel 34: constant shape
- Select events with constant time to BCID clock by applying cut to channel 1 TDO cut: TDO_{ch1} = 105
- Check the channel 34 TDO for those events (see slide 6)
- **②** Check the calibrations for different $\triangle BCID$ (see slide 8)
- Construct BCID-independent TDO calibration (see slide 34)

BCID and TDO diffrence

TDO difference for signals with delay 0 TDO₃₄ - TDO₁ for 20 ns delay

• Blue: $\Delta BCID = 0$

• Brown: $\Delta BCID = 1$


10000

8000

6000

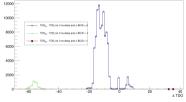
4000

BCID and TDO diffrence

TDO. - TDO. for 12 rs delay and a BOD -TDO., - TDO. for 13 ns delay and a BOD 2000

TDO difference for signals

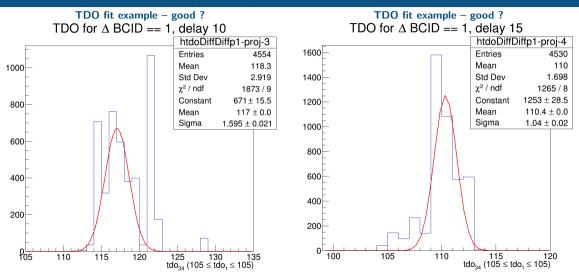
with delay 10


TDO,, - TDO, for 10 ns delay

• Blue: $\Delta BCID = 0$

• Brown: $\Delta BCID = 1$

• Blue: $\Delta BCID = 0$ • Brown: $\Delta BCID = 1$

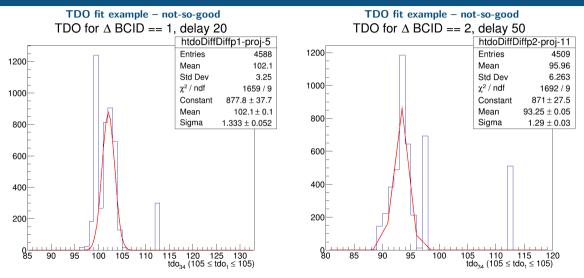


- Blue: $\Delta BCID = 0$
- Brown: $\Delta BCID = 1$
- Green: $\Delta BCID = -1$

A TEO

TDO fit

TDO fit examples, channel 34 signal charge 210fC



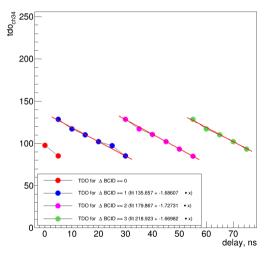
Seems. ADC has less then 8 bit. 5 bit?

Mu2E time calibration status, 2024-08-11

TDO fit

TDO fit examples, channel 34 signal charge 210fC

Seems, ADC has less then 8 bit. 5 bit?


Calibration resul

Calibration results, channel 34 signal charge 210fC

- We know, that each line (for each ΔBCID) shifted to the 1 BCID, which correspond to the TDO window size
- That mean, we can estimate *TDO* window as the difference between p0 (free parameter) between fit results (see right)
- Also, TDO dependence of the delay shoulde be independent of $\Delta BCID$, since the signal shape stays the same
- $\bullet\,$ So, we need to reconstruct that dependence for the events with the $\Delta BCID=0$

Results for different $\triangle BCID$ fitted with pol1

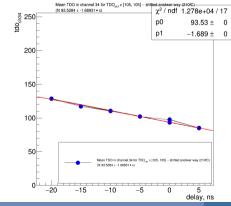
Calibration results, channel 34 signal charge 210fC

tdo_{ch34} 250 200 150 100 TDO for A BCID == 0 50 for A BCID == 1 (fit 135 657 + -1 68607 • x) DO for A BCID == 2 (fit 179.867 + -1.72731 • x) TDO for A BCID == 3 (fit 218 923 + -1 66982 • x) n 70 0 20 30 40 50 60

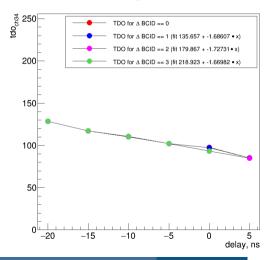
• So, we need to reconstruct that dependence for the events with the $\Delta BCID = 0$

- That can be done by:
 - Or shifting all points left to $25 \cdot \Delta BCID$ ns
 - Or shifting all points down to $TDO_{window} \cdot \Delta BCID$
- The global fit can be estimated as mean *pol1* between all fitted dependences ?

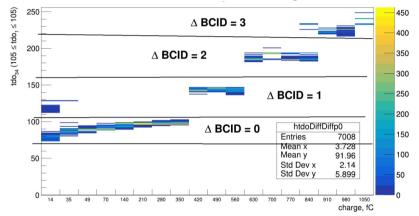
delay, ns


Results for different $\triangle BCID$ fitted with pol1

Calibration resul


Calibration results, channel 34 signal charge 210fC

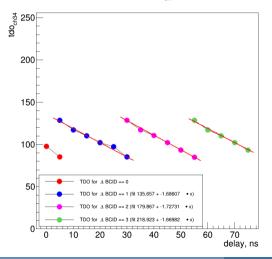
- $\bullet~$ The method "shifting all points left to $25\cdot \Delta BCID$ ns" was used
- The global fit can be done *pol*1 from all points **Fit result**


Results after shift left (for events with $\Delta BCID = 0$)

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] -- shifted anotwer way (210fC)

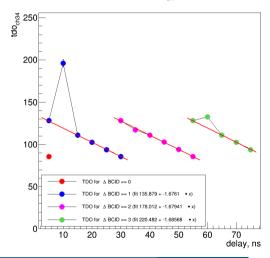
Charge dependence

Channel 34 TDO for different charge

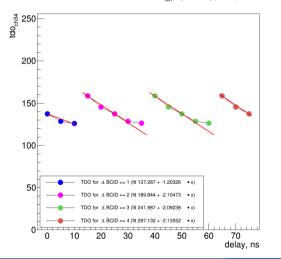


• There is a dependence for the signals with charge lower 200fC (time walk)

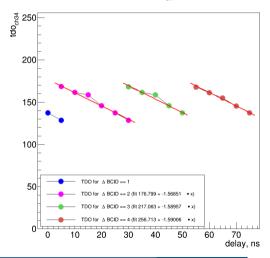
• No significant dependence for "high" signals (above 350 fC)


Results for channel 34 signal with charge 210fC

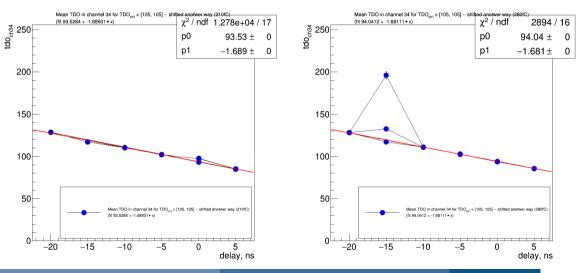
Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (210fC)


Results for channel 34 signal with charge 280fC

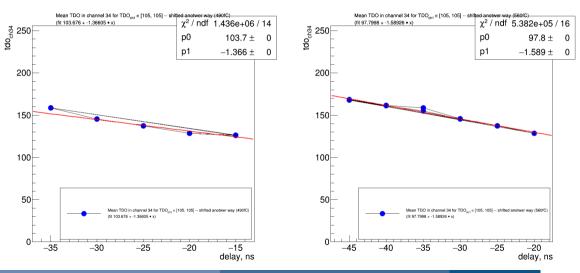
Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (280fC)


Results for channel 34 signal with charge 490fC

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (490fC)

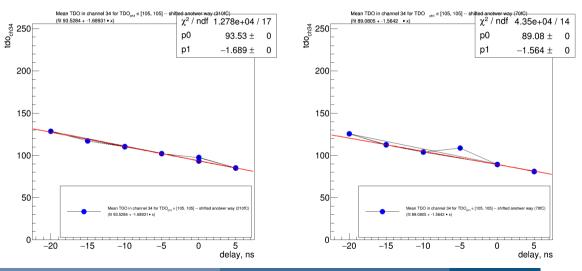

Results for channel 34 signal with charge 560fC

Mean TDO in channel 34 for TDO_{ch1} ∈ [105, 105] (560fC)


Results for channel 34 signal with charge 210fC

Results for channel 34 signal with charge 280fC

Results for channel 34 signal with charge 490fC

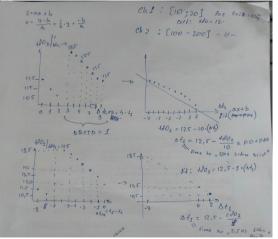

Results for channel 34 signal with charge 560fC

Charge dependence – small charges

Results for channel 34 signal with charge 210fC

Results for channel 34 signal with charge 70fC

pol1 fit results for different charges


Charge	р0	p1
70 fC	89.08	-1.56
210 fC	93.53	-1.69
280 fC	94.04	-1.68
490 fC	103.7	-1.37
560 fC	97.8	-1.59

Update 11.08.2024

calculation

Calculations

Yes, we need calibration for both channels:

Let fit with pol1: $t(TDO) = p0 + p1 \cdot TDO$

$$p1 = -rac{T_{BCID}}{TDO^{max} - TDO^{min}}$$
 , where T_{BCID} is the clock period

 $p0_{chX} = TDO_{ch1}^{min} \cdot p1_{ch1} - TDO_{chX}^{min} \cdot p1_{chX} - TDO_{ch1}^{cut} \cdot p1_{ch1}$

So,

$$\begin{split} \Delta T &= (BCID_{ch2} - BCID_{ch1}) \cdot T_{BCID} - \\ & \left[TDO_{ch1}^{min} \cdot p_{1_{ch1}} - TDO_{ch2}^{min} \cdot p_{1_{ch2}} + p_{1_{ch2}} \cdot TDO_{ch2} - p_{1_{ch1}} \cdot TDO_{ch1} \\ & - TDO_{ch1}^{cut} \cdot p_{1_{ch1}} + TDO_{ch1}^{cut} \cdot p_{1_{ch1}} \right] \end{split}$$

 $\Delta T = (BCID_{ch2} - BCID_{ch1}) \cdot T_{BCID} - (p_{1_{ch2}} \cdot (TDO_{ch2} - TDO_{ch2}^{min}) - p_{1_{ch1}} \cdot (TDO_{ch1} - TDO_{ch1}^{min}))$

But since $p0_{ch1} = TDO_{ch1}^{cut} \cdot p1_{ch1}$, and $p1_{ch1}$ should be constant, we can set $p0_{chX}^{NEW} = p0_{chX} - p0_{ch1}$ and $p0_{ch1} = 0$ And then, we can select TDO_{ch1}^{cut} for each channel separately. calculatio

Calculations

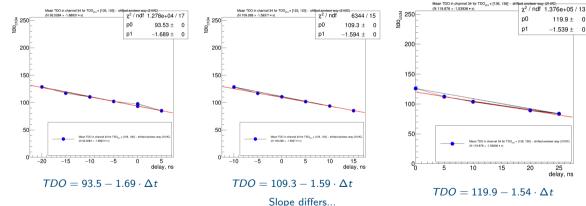
Let fit with pol1: $t(TDO) = p0 + p1 \cdot TDO$

$$p1 = -\frac{T_{BCID}}{TDO^{max} - TDO^{min}}$$

, where T_{BCID} is the clock period

$$p0_{chX} = TDO_{ch1}^{min} \cdot p1_{ch1} - TDO_{chX}^{min} \cdot p1_{chX} - TDO_{ch1}^{cut} \cdot p1_{ch1}$$

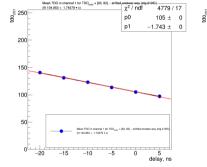
So, $\Delta T = (BCID_{ch2} - BCID_{ch1}) \cdot T_{BCID} - (TDO_{ch1}^{min} \cdot p\mathbf{1}_{ch1} - TDO_{ch2}^{min} \cdot p\mathbf{1}_{ch2} - TDO_{ch1}^{cut} \cdot p\mathbf{1}_{ch1} + TDO_{ch1}^{cut} \cdot p\mathbf{1}_{ch1} + p\mathbf{1}_{ch2} \cdot TDO_{ch2} - p\mathbf{1}_{ch1} \cdot TDO_{ch1}) + p\mathbf{1}_{ch2} \cdot TDO_{ch2} - p\mathbf{1}_{ch1} \cdot TDO_{ch1})$


$$\Delta T = (BCID_{ch2} - BCID_{ch1}) \cdot T_{BCID} - (p1_{ch2} \cdot (TDO_{ch2} - TDO_{ch2}^{min}) - p1_{ch1} \cdot (TDO_{ch1} - TDO_{ch1}^{min}))$$

But since $p0_{ch1} = TDO_{ch1}^{cut} \cdot p1_{ch1}$, and $p1_{ch1}$ should be constant, we can set $p0_{chX}^{NEW} = p0_{chX} - p0_{ch1}$ and $p0_{ch1} = 0$ And then, we can select TDO_{ch1}^{cut} for each channel separately.

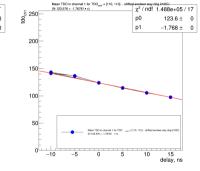
I do not see dependency of $TDO_{ch2} - TDO_{ch1}$

Calibration for different ch1 TDO cut

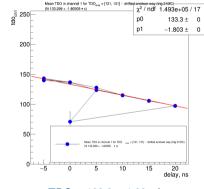

channel 1 TDO cut: 123

tracker,

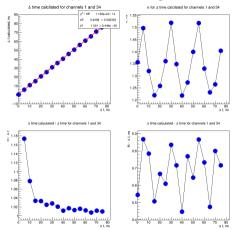
channel 1 TDO cut: 136


Channel 1 calibration

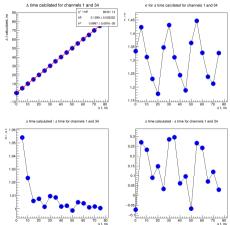
 $TDO = 105.0 - 1.74 \cdot \Delta t$


channel 34 TDO cut: 110 (*TDO*_{ch1} should be 123)

 $TDO = 123.6 - 1.77 \cdot \Delta t$


Slope differs...

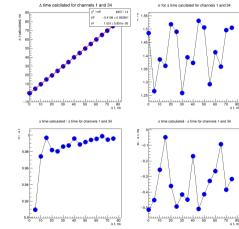
channel 34 TDO cut: 121 (*TDO*_{ch1} should be 136)



 $TDO = 133.3 - 1.80 \cdot \Delta t$

Calibration for 210fC signals and channel 1 cut 105 applied to 210fC signals

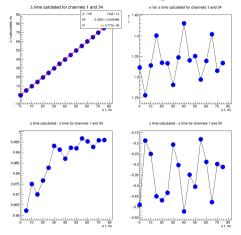
Calibration for 210fC signals and channel 1 cut 105 applied to 280fC signals



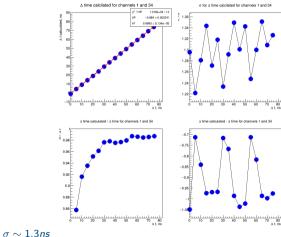
 $\sigma \sim 1.5 ns$ $\Delta t_{calculated} - \Delta t_{real}$ up to 0.9ns!

Calibration for 210fC signals and channel 1 cut 105 applied to 490fC signals

Calibration for 210fC signals and channel 1 cut 105 applied to 560fC signals

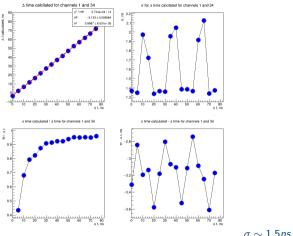


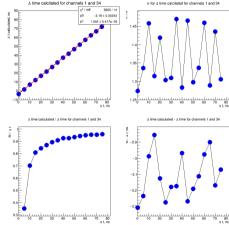
 $\Delta t_{calculated} - \Delta t_{real}$ up to 1.1ns!


A 1, 16

A L ns

Calibration for 210fC signals and channel 1 cut 123 applied to 210fC signals


Calibration for 210fC signals and channel 1 cut 123 applied to 280fC signals


 $\Delta t_{calculated} - \Delta t_{real}$ up to 1.0ns

A 1, ns

Calibration for 210fC signals and channel 1 cut 123 applied to 490fC signals

Calibration for 210fC signals and channel 1 cut 123 applied to 560fC signals

Variation of $\Delta t_{calculated} - \Delta t_{real}$ is about 0.5*ns*, but the value shifted to \sim 3*ns*

Both channels calibration check

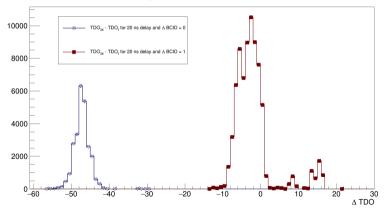
Time difference for both channels

I do not understand, why the fit with different cuts so differs... May be, time-of-charge dependence ("time walk") even between 200fC and 500fC signals. Is it possible to check / measure with the generated signals?

Backup slides

Test signal examples

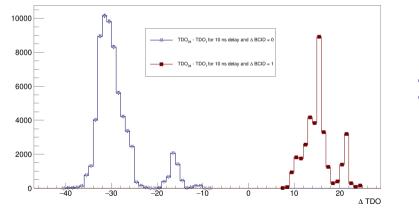
Straw-like


- High level: 0
- Low level: variable
- \bullet Width: 100 μs
- Rise edge: 2.5 ns
- Fall edge: 900 μs
- Output: inverted

- High level: 0
- Low level: variable (-100 mV / -700 mV)
- Width: 100 ns
- Rise edge: 2.5 ns
- Fall edge: 2.5 ns
- Output: inverted

BCID and TDO diffrence

TDO difference for signals with delay 0 TDO₃₄ - TDO₁ for 20 ns delay

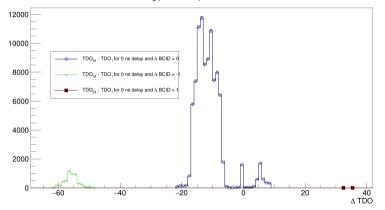


• Blue: $\Delta BCID = 0$

• Brown: $\Delta BCID = 1$

BCID and TDO diffrence

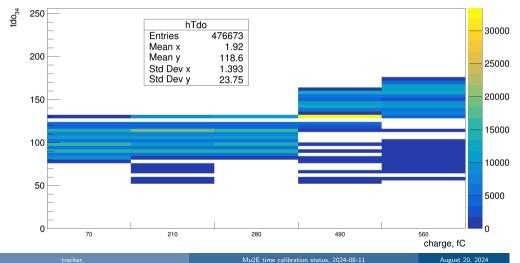
TDO difference for signals with delay 10 TDO₃₄ - TDO₁ for 10 ns delay



• Brown: $\Delta BCID = 1$

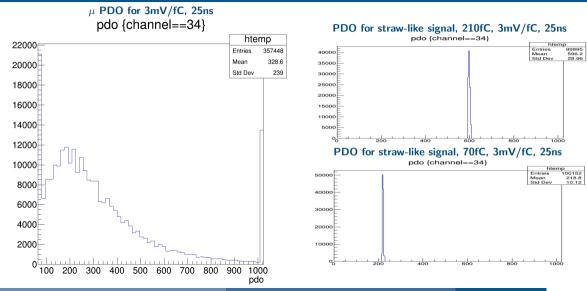
BCID and TDO diffrence

TDO difference for signals with delay 20 TDO₃₄ - TDO₁ for 0 ns delay



- Blue: $\Delta BCID = 0$
- Brown: $\Delta BCID = 1$
- Green: $\Delta BCID = -1$

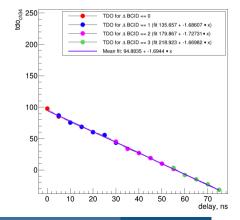
TDO per charge


Channel 34 TDO for different signal charges

tdo

32 / 34

PDO for 3mV/fC, 25ns



Calibration results, channel 34 signal charge 210fC

NOT ACTUAL. See page 9

Results after shift down (for events with $\Delta BCID = 0)$

Mean TDO in channel 34 for TDO _____t ∈ [105, 105] -- shifted (210fC)

- The method "shifting all points down to $TDO_{window} \cdot \Delta BCID$ " was used
- The global fit can estimated as mean *pol1* between all fitted dependences