

Updates in PWG4 Electromagnetic signals

D.Peresunko and C. Yang for the PWG4

PWG4: goals and organization

- Conveners: Chi Yang, Dmitri Peresunko
- Physics objectives
 - Neutral meson rapidity, spectra, flow
 - Direct photon rapidity, spectra, flow, interferometry
 - Dileptons: mass distributions, spectra
 - Antineutrons
- Talk overview
 - Recent experimental results and theoretical predictions
 - Software development
 - Ongoing analyses

Temperature measurements via di-leptons

(NICA)

Di-lepton analysis in STAR, ALICE

dileptons via Croll-Wada formula Tension between PHENIX and STAR (and probably ALICE) still persists

Dileptons in MPD

Sudhir Pandurang Rode

- Controll of low-p_T tracks
- Electon PID improved with ML
 - See Sadhir's presentation for details

Direct photon interferometry

No need to select direct photons:

NICA

- Decay-decay, decay-direct correlations have tiny width (~1 eV) and not visible
- Correlation stength reflects proportion of direct photons

$$\lambda_{\gamma}^{dir} \approx \frac{1}{2} \left(\frac{N_{\gamma}^{dir}}{N_{\gamma}^{incl}} \right)^2 \sim 10^{-3}$$

Variables: $K_T = \frac{1}{2}(\vec{p}_1 + \vec{p}_2)_T$ $q_{LCMS} = |\vec{p}_1 - \vec{p}_2|$ in Longitudinally Co-Moving System

Direct photon BE correlations at ALICE

ALI-PREL-579121

collisions at LHC Direct photon yield was measured at 250<pT<700 MeV/c with high precision

Photon BE correlations at NICA

$$C_2(q,K) = 1 + \lambda \frac{\left| \int d^4 x S(x,K) e^{iqx} \right|^2}{\left| \int d^4 x S(x,K) \right|^2}$$

Wigner probability density of photon emissin S(x,K) estimated from UrQMD model

Correlation radii measured for photons emitted from different phases as a function of time from the start of hydro simulation

Anti-neutron registration in EM calorimeter (ALICE)

How can we identify antineutrons?

- Deposited energy of annihilation .
- Neutrality (charged particle veto)
- Dispersion of cluster (M20, M02 eigenvalues of S matrix)

- Cannot measure momentum based on deposited energy
- Use time-of-flight information from PHOS to reconstruct antineutron • momentum

Counts

mpdroot development

- A class for re-cluserization
 - Change (de-)calibration
 - Change reconstructin parameters without requesting another pass of reconstruction

```
MpdAnalysisManager man("ManagerAnalysis", nEvents);
man.ReadBranches("MCTrack,TpcKalmanTrack,Vertex,MPDEvent,ZdcDigi,TOFMatching,EmcDigit,MCEventHeader");
MpdEmcSimParams * fSimParams = MpdEmcSimParams::GetInstance();
fSimParams->fLogWeight = 5.;
                              //Weight to calculate position and dispersion
fSimParams->fLocalMaximumCut = 0.050; //Local maxima calculation for unfolding
//New de-calibration
MpdEmcCalibParams * calib = new MpdEmcCalibParams();
int NCHANNELS = 38400:
for(int i=0; i<NCHANNELS; i++)calib \rightarrow SetGain(i,1.); //So far: do not change calibration/de-calibration
                              //Class to run re-clusterization
MpdReclusterizer reclu;
reclu.SetCalibParams(calib);
man.AddTask(&reclu);
. . . .
MpdConvPi0 pi0_loose20("pi0_loose", "pi0_loose"); //Analyze re-clusterized data as ususal
man.AddTask(&pi0 loose20);
```


Inclusive photon spectra and flow

- Fixes in MpdConvPi0
 - Better primary assignment
- Reconstruction with larger local max threshold 50 MeV
- Inclusive photon reconstruction efficiency close to unity
- Collective flow of reconstructed clusters with photon primary close to generated photons in both methods

Neutral mesons

- Another wagon deloped
 - pairGG
- 100 M events analyzed
 - Production 25+production 35
- Closure test shows agreement within 2-5% of reconstructed spectra

Neutral meson flow

Oleg Golosov

Wagon MpdConvPi0

-1.5

>

0.

0.05

-0.05

-0.1

5M events analyzed Production 25

-+ MC

ECAL

Hybrid

-0.5

Good agreement between flow of reconstructed clusters originated from π^0 photons and primary π^0 flow on generator level. Both methods (ECAL and Hybrid) agree

Collider vs FXT modes

In Fixed Target mode effissinenly in general somewhat smaller, but does not drop as fast at small $p_{\mbox{\tiny T}}$

Conclusions

- Analysis software is being developped
- Basic analyses started
 - [□] revealed some points in ECAL reconstruction requiring optimisation
 - Event mixing
 - Photon and electron ID still can be optimized
- Much more analyses in pipeline
 - $\square \quad \pi/\eta \rightarrow \gamma(e^+e^-)$
 - $\Box K_s^0 \to \pi^0 \pi^0$

 - $\Box \quad \eta' \to \eta \pi^+ \pi^-$

 - Dielectron continuum, LVMs
 - Single e_{HF}
 - □ Fluctuations $<\pi^0, \pi^{\pm}>$
 -

(NICA)