

PWG1 Summary

PWG1 conveners: <u>Petr Parfenov</u> (JINR), Grigory Feofilov (SPbSU)

With big help from Andrey Moshkin (VBLHEP JINR) and Dmitry Podgainy (MLIT JINR)

XIV MPD Collaboration Meeting, Dubna, Russia, 14-16 October 2024

Outline

- PWG1 activity
- Selected results since previous meeting
- Summary

PWG1 activity

There were 6 reports at MPD Cross-PWG since the previous meeting:

- 1. <u>T.Q.T. Le, A. Galoyan, V. Uzhinsky</u>, *Coupling of UrQMD 3.4 and SMM models for simulation of neutron and nuclear fragment productions in nucleus-nucleus interactions*, **9 Jul 2024**
- 2. <u>V. Riabov</u>, *MPD-FXT performance with Xe-beam and W-target*, **9 Jul 2024**
- 3. <u>V. Riabov</u>, Beam pipe and luminosity detector at startup, **20 Aug 2024**
- 4. <u>D. Flusova, N. Bikmetov</u>, First results on centrality determination in Xe+W and Xe+Xe collisions at E_{kin} = 2.5 AGeV in MPD-FXT, 8 Oct 2024
- 5. <u>E. Andronov</u>, Status of p_T vs. multiplicity correlations analysis, **8 Oct 2024**
- 6. <u>N. Kolomoyets</u>, *Light hadron spectra obtained with MPDRoot*, **8 Oct 2024**

p_T - N_{ch} correlations

Analysis wagon for unidentified p_T spectrum and moments of p_T as a function of multiplicity (N_{ch}) is in preparation: **MpdFluctPt**

- Such studies have a long history of measurements for broad energy range and for different colliding systems
- It might help to constrain models
- However only recently HI experiments started to publish full p_T spectrum as a function of multiplicity so one can have a look not only on the mean p_T but on the higher moments as well
- It is used to study collectivity in p-p, p-A and A-A collisions

First results for production 25 and 26 (Bi+Bi, $\sqrt{s_{NN}}$ =9.2 GeV) are ready

See E. Andronov talk at the MPD Cross-PWG Meeting (08.10.2024)

cp_T>, GeV/c

MPD in Fixed-Target Mode (MPD-FXT)

• Model used: UrQMD mean-field

- Bi+Bi, E_{kin} =1.45 AGeV (Vs_{NN} =2.5 GeV)
- Bi+Bi, E_{kin} =2.92 AGeV (Vs_{NN} =3.0 GeV)
- Bi+Bi, E_{kin} =4.65 AGeV ($\sqrt{s_{NN}}$ =3.5 GeV)
- \circ Xe+W, E_{kin}=2.5 AGeV (Vs_{NN} =2.87 GeV)
- \circ Xe+Xe, E_{kin}=2.5 AGeV (Vs_{NN} =2.87 GeV)
- Point-like target:
 - Bi+Bi: z = -115 cm
 - \circ Xe+W, Xe+Xe: z = -85 cm
- GEANT4 transport
- Multiplicity-based centrality determination

Centrality Framework software:

https://github.com/FlowNICA/CentralityFramework/

FFD, FHCal, TOF: trigger efficiency in Xe+W at MPD-FXT

- Most probably FFD will be the main trigger detector
 - To reject background from the photoproduction and EMD, FFD and FHCal trigger decisions should be in coincidence with TOF

• Trigger performance:

- Both T=2.5 and 4.0 GeV/n can be used in physics runs
- \circ T=0.5 GeV/n shows bad performance
 - suitable only for performance study and technical runs

See V. Riabov <u>talk</u> at the MPD Cross-PWG Meeting (09.07.2024)

Luminosity detector: trigger efficiency in Xe+W at MPD-FXT

Detector at -85 cm

- Setup with simplified geometry was used for GEANT4:
 - stainless steel beam pipe (diameter = 80 mm, width = 1 mm)
 - luminosity detector 4 scintillator blocks of 10 x 10 cm2 at different locations along z-axis: -85, -40, 60, 160, 260 cm.
 - collision vertex is at -85 cm, Xe¹²⁴+W
 - DCM-QGSM-SMM event generator
- Efficiency is higher for higher beam energies
- It is preferrable for luminosity detector to be placed closer to the target wire

See V. Riabov talk at the MPD Cross-PWG Meeting (20.08.2024)

Centrality determination in MPD-FXT

Centrality, %

Implementation of "pileup" in the centrality determination procedure

Simple toy model for pileup event generation is available: <u>https://github.com/FlowNICA/McPileUp</u> Pileup events were implemented in the centrality determination framework: <u>https://github.com/FlowNICA/CentralityFramework</u>

Testing centrality determination framework in BM@N

data/fit

 Pileup event sampling is implemented in the framework similar to STAR-like approach¹
 Generalized NBD parametrization is built in the framework. Fit parameters now are consistent with Kharzeev-Nardi² approach

Good agreement with experimental data

¹<u>arXiv:2006.15809</u> (2020) ²Phys.Lett. B507 (2001) 121-128 10

Testing centrality determination framework in BM@N

f

RMS,

d>

- Difference in the most central class is due to pile-up:
 - Cut on maximum multiplicity 0 differs - expected to improve with optimized pileup rejection
- The difference in the mid-central region is within 5%
 - The possible effect from 0 spectators in the case of h^{\pm} multiplicity seems to be small

Coupling of UrQMD and SMM models

Realistic heavy-ion model at NICA energies needs to have:

Implemented EoS with mean-field approach

Fragmentation model for forward/backward spectator region
UrQMD+SMM satisfy such requirements:

- UrQMD describes well spectra of $(\pi^{\pm}, K^{-}, p, \bar{p}), v_n$ of protons, etc.
- SMM provides realistic fragmentation

See T.Q.T. Le <u>talk</u> at the MPD Cross-PWG Meeting (09.07.2024)

Coupling of UrQMD and AAMCC models

UrQMD:

- Version 3.4
- Cascade mode in this work
- Offset radius 5 fm
- Evolution time 100 fm/c
- Other parameters are set to default values

AMC:

- Find spectator nucleons
- Define prefragments via MST-clustering
- Constant d = 2.7 fm
- Model prefragments decays
- All the participant data remain intact

UrQMD-AMC allows to have mean-field mode (UrQMD) while having realistic fragmentation with (AAMCC)

UrQMD-AMC was developed and is ready for use in MPD framework

• Further work is in progress (participant-spectator separation criteria in UrQMD, calculation of the FHCal response, etc.)

See A. Svetlichnyi <u>talk</u> at the MPD Cross-PWG Meeting (14.11.2023)

Modified MC-Glauber

A. Seryakov, G. Feofilov, AIP Conference Proceedings 1701(1):070001

- Standard MC-Glauber model (SGM): $\circ \sigma_{NN}^{inel}, d = const; E_{tot}, P_{tot} \neq const;$
- Modified MC-Glauber model (MGM):

 $o \sigma_{NN}^{inel} = const; d ≠ const; E_{tot}, P_{tot} = const;$ o New parameter **k** – mean fraction of momentum loss

MGM takes into account NN collisions with energy loss

Notable difference between SGM and MGM is observed – might be important at NICA energies

Work is ongoing: ➤ See S. Simak talk at the MPD Cross-PWG Meeting (20.04.2024)

Summary

> MPD-FXT now the focus of feasibility studies

- Xe¹²⁴+W general purpose production was generated with target at z=-85 cm and Xe beam at E_{kin}=2.5A GeV
- Study with simplified beam pipe and luminosity detector shows trigger efficiency Eff_{trig}>99% for E_{kin}=2.5A GeV

Centrality determination in MPD-FXT

• Both MC-Glauber and Γ -fit approaches can be used in the fixed target configuration. Γ -fit requires further investigation in case of asymmetric collisions

> BM@N Xe+CsI run provides excellent opportunity to test analysis frameworks on real experimental data

- Centrality determination framework can describe multiplicity distribution in Xe+CsI data
 - ✤ Pileup event sampling was implemented in the MC-Glauber approach with the additional fit parameter
 - Generalization of NBD was built in the framework. That allows to obtain fit parameter consistant with the Kharzeev-Nardi approach

> Development of the HI models

- UrQMD+SMM and UrQMD-AMC can simultaneously realistically describe particle spectra, flow, etc. (mean-field UrQMD) and spectator fragments
- Modification for MC-Glauber to take into account NN collisions with energy loss might be important at NICA energies

Thank you for your attention!

Backup

Motivation for centrality determination

• Evolution of matter produced in heavy-ion collisions depends on its initial geometry

 Goal of centrality determination: <u>map (on average) the collision geometry parameters</u> <u>to experimental observables (centrality estimators)</u>

 Centrality class S₁-S₂: group of events corresponding to a given fraction (in %) of the total cross section:

$$C_S = \frac{1}{\sigma_{inel}^{AA}} \int_{S_1}^{S_2} \frac{d\sigma}{dS} dS$$

(target) spectators

Overview of centrality determination methods

Method type	MC-Glauber based	Model independent (e.g. Г-fit method)	Based on ML
Used in	STAR, ALICE, HADES, CBM, MPD, etc.	ALICE, CMS, ATLAS J. Y. Ollitrault et al. Phys.Rev. C 98 (2018) 024902	Becoming popular Fupeng L. et al. J.Phys.G 47 (2020) 11, 115104
Advantages	Commonly used, well established procedure	Universality due to model independence	The most modern and fast methods
Disadvantages	MC-Glauber model provides non-realistic N _{part} simulations at low energies M. O. Kuttan et al. e-Print: 2303.07919 [hep-ph]	In strong connection with σ _{inel} which dependence on energy is not well studied at low energies (same problem for MC-Glauber based methods)	There no way to control the physicality of the methods

Centrality determination in NA61/SHINE using MC-Glauber

Centrality determination in NA61/SHINE using Γ -fit

- Centrality determination based on spectator energy using inverse Bayes approach is being developed and tested on model (UrQMD, DCM-QGSM-SMM) and NA61/SHINE data
- Application of centrality determination based on spectator energy using MC-Glauber and inverse Bayes approaches is in progress
- Possible improvements are under investigation

Centrality determination in HADES, STAR

Eur. Phys. J. A (2018) 54: 85

Centrality	b_{\min}	b_{\max}	$\langle b angle$
Classes			
0-5%	0.00	3.30	2.20
5 - 10 %	3.30	4.70	4.04
10 – 15 %	4.70	5.70	5.22
15 – 20 %	5.70	6.60	6.16
20 - 25 %	6.60	7.40	7.01
25 - 30 %	7.40	8.10	7.75
30 - 35 %	8.10	8.70	8.40
35 – 40 %	8.70	9.30	9.00
40 – 45 %	9.30	9.90	9.60
45 - 50 %	9.90	10.40	10.15
50 - 55 %	10.40	10.90	10.65
55 - 60 %	10.90	11.40	11.15

STAR, Au+Au, BES

Centrality determination based on multiplicity provides with:

- impact parameter (b)
- number of participating nucleons
 (N_{part})

Similar centrality estimator is needed for comparisons with STAR, HADES, etc.

Centrality determination based on Monte-Carlo Glauber sampling

Centrality can be estimated based on multiplicity of produced charged particles or spectator energy

The Bayesian inversion method (Γ-fit): multiplicity

ch .

Relation between multiplicity N_{ch} and impact parameter b is defined by

the fluctuation kernel:

$$P(N_{ch}|c_b) = \frac{1}{\Gamma(k(c_b))\theta^k} N_{ch}^{k(c_b)-1} e^{-n/\theta} \qquad \frac{\sigma^2}{\langle N_{ch} \rangle} = \theta \simeq const, \ k = \frac{\langle N_{ch} \rangle}{\rho}$$
$$c_b = \int_0^b P(b')db' - centrality \text{ based on impact parameter}$$

Mean multiplicity as a function of c_b can be defined as follows:

$$\langle N_{ch} \rangle = N_{knee} \exp\left(\sum_{j=1}^{3} a_j c_b^j\right) \quad N_{knee}, \theta, a_j - 5 \text{ parameters}$$

Fit function for N_{ch} distribution: b-distribution for a given N_{ch} range:

$$P(N_{ch}) = \int_0^1 P(N_{ch}|c_b)dc_b \quad P(b|n_1 < N_{ch} < n_2) = P(b)\frac{\int_{n_1}^{n_2} P(N_{ch}|b)dN_{ch}}{\int_{n_1}^{n_2} P(N_{ch})dN_{ch}}$$

2 main steps of the method:

The Bayesian inversion method (Γ-fit): forward energy

Relation between multiplicity N_{ch} and impact parameter b

is defined by the fluctuation kernel:

$$P(E \mid c_b) = \frac{1}{\Gamma(k(c_b))\theta^2} E^{k(c_b)-1} e^{-E/\theta} \qquad \theta = \frac{D(E)}{\langle E \rangle}, \quad k = \frac{\langle E \rangle}{\theta}$$

 $c_b = \int_0 P(b')db'$ – centrality based on impact parameter

$$E\rangle$$
, $D(E)$ – average value and variance of energy

 $\langle E \rangle = \mu_1 \langle E'(c_b) \rangle + \lambda_1, \quad D(E) = \mu_2 D(E'(c_b))$ Three fit parameters μ_1, μ_2, λ_1

 $\langle E'(c_b) \rangle$, $D(E'(c_b))$ – average value and variance of energy from the model These quantities can be approximated by polynomials

$$\langle E'(c_b) \rangle = \sum_{j=1}^{8} a_j c_b^j, \quad D(E'(c_b)) = \sum_{j=1}^{6} b_j c_b^j$$

2 main steps of the method:

Comparison with MC-Glauber fit

Centrality determination in Bi+Bi: multiplicity fit

- Nhits>16
- 0 < η < 2

Multiplicity-based centrality determination using inverse Bayes was used in the flow studies

Centrality determination in Bi+Bi : vs Centrality

- Nhits>16
- 0 < η < 2

Multiplicity-based centrality determination using inverse Bayes was used in the flow studies

Centrality determination in Xe+W: MC-Glauber approach

There is still no full agreement with data for most central collisions

Centrality determination in Xe+W: Γ -fit approach

 Γ -fit provides better fit but worse estimation than MC-Glauber approach

Cuts: $0 < \eta < 2$; Charge $\neq 0$;

Inverse Bayes approach needs to be modified for asymmetrical collisions

Centrality determination in Xe+Xe: MC-Glauber approach

 $\mu = 0.73, f = 0.9, k = 60, \chi^2 = 3.212 \pm 0.115$

Cuts: 0 < η < 2; Charge ≠ 0;

Overall good agreement with model data for both multiplicity fit and estimation

Good agreement: further optimizations are in progress

Main problem with centrality based on MC-Glauber at low energies

31

Multiplicity in pp/nn/np collisions

Generally **NBD** is used to define multiplicity N_{ch} in such collisions:

$$P(n;\mu,k) = \frac{\Gamma(n+k)}{\Gamma(n+1)\Gamma(k)} \frac{\left(\frac{\mu}{k}\right)^n}{\left(\frac{\mu}{k}+1\right)^{n+k}}$$
Mean: μ Variance: $\mu/k \cdot (\mu+k)$

It works at high energies where $\mu > 1$, k > 1.

However at lower energies we likely have situation where $\mu < 1$, k < 1. NBD cannot be applicable in that case. We have to use generalized function - gamma distribution (**GD**):

$$P(x;\mu,k) = \frac{e^{-\frac{x}{\beta}}x^{\alpha-1}}{\beta^{\alpha}\Gamma(\alpha)}, \alpha = \frac{\mu k}{\mu+k}, \beta = \frac{\mu}{k} + 1 \quad \text{Mean: } \mu \text{ Variance: } \mu/k \cdot (\mu+k) = \frac{\mu}{k} + 1 \quad \text{Variance: } \mu/k$$

Multiplicity in pp/nn/np collisions

Case 1: k>1, $\mu^{\sim}\sigma^{2}=\mu/k \cdot (\mu+k)$. The mean multiplicity is generally on the same level as its variation.

Case 2: k < 1, $\mu < \sigma^2 = \mu/k \cdot (\mu + k)$. The mean multiplicity might be smaller than its variation.

Case 1 can be defined with both NBD and GD. Case 2 can be defined with GD only!

Case 2 can be more feasible at lower energies, where we have smaller multiplicities and relation between μ and σ^2 might vary greatly

What do we get if we implement it into our centrality procedure?

data/fit

Runld: 8120-8170

Multiplicity Cuts:

- CCT2
 - N_{vtxTr}>1
- (Sts digi vs N_{tr}) cut
- $V_r < 1 \text{ cm}$
- $V_7 < 0.1$ cm

Fit suggests **f=0.6** - means that soft processes are dominating at E_{kin} =3.8A GeV In agreement with Kharzeev-Nardi approach Phys.Lett. B507 (2001) 121-128

Good agreement with experimental data

34

data/fit

Runld: 8120-8170

Multiplicity Cuts:

- N_{vtxTr}>1
- (Sts digi vs N_{tr}) cut
- V_r <1 cm
- $V_7 < 0.1$ cm
- Negative charge only

New parametrization (GB) can describe multiplicity of negatively charged tracks

Good agreement with experimental data

35

MC Glauber model

MC Glauber model provides a description of the initial state of a heavy-ion collision

- Independent straight line trajectories of the nucleons
- A-A collision is treated as a sequence of independent binary NN collisions
- Monte-Carlo sampling of nucleons position for individual collisions

Main model parameters

- Colliding nuclei
- Inelastic nucleon-nucleon cross section (depends on collision energy)
- Nuclear charge densities (Wood-Saxon distribution)

$$\rho(r) = \rho_0 \cdot \frac{1 + w(r/R)^2}{1 + \exp\left(\frac{r-R}{a}\right)}$$

Geometry parameters

b – impact parameter

 $\begin{array}{l} N_{part} \ -number \ of \ nucleons \ participating \ in \ the \ collision \\ N_{spec} \ -number \ of \ spectator \ nucleons \ in \ the \ collision \\ N_{coll} \ -number \ of \ binary \ NN \ collisions \end{array}$

Model dependence of b, N_{part}

- Use MC Glauber for centrality determination
- The MC Glauber non-realistic N_{part} simulations at low energies
- Differences in of number of participant nucleons (**N**_{part}) distributions from UrQMD and MC
- The impact parameter (**b**) model independent centrality estimator