

TPC and ECAL cooling system: status

XIV Collaboration Meeting of the MPD Experiment at NICA

October 14, 2024

Speaker: Alexander S. Fedotov

The system

System parameters:

- 1. Total power: 32 kW
- 2. Total flow: $60 \text{ m}^3/\text{h}$.

Leakless regime of operation: absolute pressure in TPC & ECAL < <u>1 atm.</u>

Thermal stabilization of TPC working gas mixture of 0.1 K

Outer thermal screen

Frontal thermal

screen

Internal thermal screen

SAMPA & FPGA electronics + ROC cases

Flanges LVDB and reading controllers

Goal: to develop and install cooling & thermal stabilization system

Tasks:

- Make detailed hydrodynamic simulations;
- Verify simulations with <u>hydraulic experiments</u>;
- Prepare the technical design and deliver the equipment;
- Find appropriate regimes using <u>thermal experiments</u>;
- Develop control algorithms and assemble the system.

Hydrodynamic simulations - Done

Each contour was simulated using Navier-Stokes equations on a pipe graph:

$$\begin{cases} \frac{\partial \vec{u}}{\partial t} + (\vec{u} \cdot \nabla)\vec{u} = -\frac{\nabla P}{\rho} - \frac{1}{2}f\frac{|u|\vec{u}}{D} + \vec{g} \\\\ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho\vec{u}) = 0 \\\\ \frac{1}{\sqrt{f}} = -2\log\left(\frac{\varepsilon}{3.7D} + \frac{2.51}{\operatorname{Re}\sqrt{f}}\right) & \Delta p = \rho g\Delta h \\\\ 0.8 \text{ atria} \end{cases}$$

Leakless achieved! We found:

- 1. Pump flow and pressure conditions;
- 2. Vacuum tank pressure;
- 3. Pipe diameters;
- 4. Pipe tracing enhancements.

Hydraulic experiments - Done

Thermal stabilization of pad plane

								мин. ~24.3 °С 27.0
Element	SAMPA	ECAL	Frontal thermal screen	Outer thermal screen	LVDB	ROC case	FPGA	♦FLIR 23.0 Pad plane with ROC input water heating <i>T</i> = 23 °C
<i>q,</i> m³/h	0,55	0,12	0,08	0,91	0,1	0,1	0,27	24,55
ΔP_{exp} , atm	0,47	0,16	0,15	0,41	0,5	0,5	0,52	O 24,50 K 24,45 24,45
$\Delta P_{\rm sim}$, atm	0,50	0,18	0,15	0,38	0,5	0,5	0,55	24,40 24,40 0 20 40 60 80 100 120 Measurement point

Installation of Vacuum tanks, Pump modules, Manifolds

Water plant

Assembled at platform

Manifolds: redistributes water from the contour line to the individual subcontours Water Tank: An airtight reservoir that contains water below atmospheric pressure. Tested for leaks at 0.2 atm and 10 atm.

Pump module

Scheme

module The & pump vacuum tank

- provides circulation,
- maintains low pressure, ۲
- filters,
- thermally stabilizes
- water before entering MPD

Principal scheme of water plant:

Pump module – main equipment

Pump module – control equipment

Frequency converter EMC **Temgy DN 20 flowmeter** Bürkert 2702 & 2301 **PLC Siemens** input filter pneumatic control valves flow measurement I/O modules controls flow, smoothens Read from sensors, **Automatic** transitions **Control valves** switches N Bus zero ARCOLAB **Pt-100-B** CCT-8930 conductometer **Aplisens pressure sensors** Automation cabinet thermometer Pressure control controls ion concentration

XIV Collaboration Meeting of the MPD Experiment at NICA

TPC and ECAL cooling system: status

Pump modules - photos

Assembled under 1st floor of platform

Water tanks & manifolds

Heat exchanger and thermal sensor for TPC gas mixture

Thermal stabilization of TPC gas

Motivation

Thermal stabilization ± 0.1 K is needed for reliable event reconstruction in $Ar_{0.8}(CO_2)_{0.2}$

Challenges

- Measure gas temperature with accuracy better than ±0.1 K
- Prepare gas at a specific temperature to feed into the TPC
- Minimize the influence of the environment on the gas supplied to the TPC

Initial concept by I.A. Balaschov

Heat exchanger

Shell-and-tube heat exchanger:

- Gas flows in small tubes with large surface area;
- Water environment outside of small tubes provides heat exchange

Stationary 3D Navier-Stokes equations for gas and water:

$$\begin{cases} \nabla \cdot \vec{u} = 0 \\ \rho_0(\vec{u} \cdot \nabla)\vec{u} = \nabla \cdot \left[-p\mathbf{I} + \mu_0 \left(\nabla \vec{u} + (\nabla \vec{u})^T \right) \right] + \rho_0 \beta \left(T_0 \right) \left(T - T_0 \right) \vec{g} \\ \rho_0 C_{p0}(\vec{u} \cdot \nabla)T = \nabla \cdot \lambda_0 \nabla T \end{cases}$$

Mesh for computations

- \vec{u} fluid velocity;
- μ dynamic viscosity;
- *p* pressure;
- I identity matrix.
- λ_0 heat conduction coefficient at reference temperature T_0 ;
- C_{p0} heat capacity at reference temperature T_0 ; β – compressibility,
- ρ_0 density at reference temperature T_0 .

Heat exchanger

Prototype simulation parameters:

- Length 0.55 meters;
- Inlet gas is 10 K hotter than water; Gas flow is 20 200 l/min. •

- Water flow is 0.1 m³/h;

Heat exchanger

Shell-and-tube heat exchanger for gas thermal stabilization:

- 74 gas pipes of 6 mm diameter
- ~8 kg weight
- Being manufactured at LHEP

Water inlet

Gas temperature sensor

The gas volumetric heat capacity is 10⁴ less than that of liquids and solids

To measure temperature of gas (not a wire or a wall) a sensor <u>must be</u> drown deep in gas

Gas temperature sensor

- Argon flow $\approx 800 \text{ cm}^3/\text{min}$;
- Water jacket is around testing tube;
- Pt100 RT + NI Controller;

Testing tube with sensor fully in

Sliding sensor almost out of tube

Experiment was motivated by Gleb Meshcheryakov

Time dependence of ΔT between the control and the full-drown sliding sensor

<0.03 K gradient is achieved inside the testing tube with gas about 15 °C and room temperature 21 °C

Gas temperature sensor

Prototype of gas temperature sensors with swagelok and wire support

Difference between control and sliding sensor temperature on the length of wires inside gas

Conclusions

- Pumping modules, vacuum tanks, and collectors have been delivered and installed on the platform;
- A shell-and-tube heat exchanger for the thermal stabilization of the flowing gas has been developed. The prototype is being manufactured in the LHEP workshops;
- Prototypes of temperature sensors for the flowing gas have been proposed and manufactured, with an expected measurement accuracy of 0.03 K;
- Experiments conducted have shown the necessity of thermal stabilization of the gas line using a water jacket.

Event	Date			
Finalizing of platform pipes installation for	November 2024			
MPD cooling system				
Assembling of temporary scheme for pipe washing and testing	November 2024			
Connecting of pump modules for testing	November 2024			
Continuation of assembling	December 2024			

Co-authorship and gratitude Research was directly conducted by

> Institute for Nuclear Problems of Belarusian State University:

Ilya Zur

ArcoLab: Alexander Shish, Vladimir Senkevich, Mikhail Vaschilenko, Alexander Galuza, Dmitiry Pristavkin

JINR:

Alexander Fedotov, Gleb Mescheryakov, Oleg Fateev, Alexander Ryubakov, Alexander Makarov, Igor Balaschov, Alexey Butorin, Nelli Pukhaeva (NOSU) Схема Cu-TS замкнутого контура

