

Fixed Target Analysis: PID and Track Efficiency for the MPD experiment

Studens: Adrian Lara Francisco Reyes

Supervisors: Dr. Vadim Kolesnikov Dra. Ivonne Alicia Maldonado Cervantes Dr. Viktar Kireyeu Natalia Kolomoyets

Primary Vertex Analysis

Primary Vertex

Reco z-Vertex

Distribution of z-Vertex with all generated events. From runMC.C file we establish primary vertex at -85cm. So having primary vertex at -50 to 150 its not clear.

A percentage of how many events are near the peak has been made.

Percentage of events |z - 85| < 15: 80.164%

Primary Vertex

Impact Parameter

We analyzed the impact parameter, it was seen that to try to exclude the peripheral collisions we need to make a cut in MonteCarlo Tracks

Applied cuts : MCTracks > 308 = 124 (Xe) + 184 (W)

We restrict MCTracks to have more particles than the initial ones, for 124 for Xe and 184 for W.

Primary Vertex

Reco z-Vertex

Again we calculate percentage of events and we obtain.

Percentage of Events |z - 85| < 15: 98.95%

Cuts obtained: Z between -100 cm and -70 cm

One of the tasks performed is to clean the distributions of the phase space, with them we can observe the effectiveness of the cuts applied for the reconstructed tracks. Here we show phase space of Primary and Secondary particles.

resolution of pT is on palette

Selection criteria

To select tracks we rely on transversal momentum resolution.

$$\delta p_T = \frac{\left| p_T^{Reco} - p_T^{MC} \right|}{p_T^{MC}}$$

Looking for pT resolution less than 0.2.

Procedure

Primary and secondary particle TProfile were created with respect to the variables Nhits, pseudorapidity, DCA vs pT resolution.

The cuts obtained from the primary vertex were left unchanged.

Impact Parameter

To exclude even more peripheral events we made a cut at b < 13 fm

Cut Obtained: b < 13 fm

Obtained cuts for Accepted Tracks

Primary Vertex

• MC Tracks > 308

• Z-Vertex (-100,-70)

Cut on eta, DCA, Number of Hits, b

- Eta (-1, 2)
- DCA <= 2
- Number of Hits => 20
- Impact parameter b < 13

From the distributions below, we can observe how the cuts affect the phase space, also we can observe that resolution is too big for particles with pT > 2 GeV/c and that it is not symmetric with respect to pseudorapidity, below zero values, pT reach a maximum at 1 GeV/c.

hRefMultSTAR

From Accepted Reconstructed Tracks we obtain multiplicity distribution, this distribution was made for Centrality determination

Applied cuts: MC Tracks > 308 Eta (-1 , 2) DCA <= 2 NHits => 20 b < 13

Centrality Determination: MC Glauber

Glauber package

Necessary data

- Nuclei Radius:
 - Xe = 4.763 +- 0.01
 - W = 5.373 +- 0.01
- Skin Thickness:
 - Xe = 0.523
 - W = 0.523
- Atomic Number:
 - Xe = 124
 - W = 184
- Inelastic cross section:
 - o 26.94035 mb
- Statistics 10 to 1 on total of Events:
 - 3,848,000 a 384,800

Centrality Framework

Necessary data

- Multiplicity Distribution
- Output file from Glauber package

To run MC Glauber method, the necessary data its presented.

All instruction on how to run MC Glauber its on Centrality Framework Github.

https://github.com/FlowNICA/CentralityFramework

Result obtain on MC Glauber are distribution divided by centrality classes, here are represented with different colors.

Multiplicity

(a) Mean impact parameter (b) Mean Number of participants vs Centrality vs Centrality

Histograms divided on centrality classes.

(c) Mean Number of collision vs (d) Impact parameter divided by Centrality centrality Classes

Figure 16: Histograms divided by Centrality Classes

Centrality, %	N_{ch}^{min}	N_{ch}^{max}	$\langle b \rangle$, fm	RMS	$\langle N_{part} \rangle$	RMS	$\langle N_{coll} \rangle$	RMS
0 - 10	95	164	2.54	1.00	242.75	26.44	539.73	88.76
10 - 20	70	95	4.37	0.76	183.50	26.19	367.84	79.38
20 - 30	51	70	5.69	0.63	134.96	21.54	241.37	59.12
30 - 40	36	51	6.74	0.59	97.33	17.96	154.42	43.75
40 - 50	24	36	7.68	0.59	67.38	14.84	93.66	31.25
50 - 60	15	24	8.55	0.61	43.96	11.82	52.81	20.86
60 - 70	9	15	9.35	0.66	27.27	9.01	28.33	13.12
70 - 80	5	9	10.11	0.78	16.04	6.73	14.59	8.12
80 - 90	2	5	10.99	0.99	8.23	4.74	6.60	4.77

Table of Multiplicity, Impact parameter, Number of participants and Number of colliders divided of Centrality classes

Centrality Determination: Gamma Fit

GammaFit and Multiplicity

First the GammaFit method to perform the adjustment takes a multiplicity distribution from a file ". root", this multiplicity distribution is opposes from the reconstructed data and applied to it the cuts obtained earlier.

Cuts: MCTracks > 308 Eta (-1 , 2) DCA <= 2 NHits => 20 b < 13

hRefMultSTAR

Extrapolation of impact parameter by centrality

The adjustment is made by extrapolating and reconstructing the impact parameter for different classes of centrality, comparing with the data that it extracts directly from the simulation, in this case from the generator UrQMD

Adjustment of distribution

Then compare the adjustment from the reconstructed impact parameter with the input data as shown in the figure.

Comparison of impact parameter

Finally, the average of the impact parameter from the different classes of centrality is compared with the impact parameter extracted from the UrQMD

Parameter	Value
NDF	143
a1	-3.73
a2	0.164
a3	-2.84
chi^2	163.5
nknee	131.7
sigma	679.9
teta	0.647
chi^2/NDF	1.143111

In our case the Framework was configured so that all the adjustment is automatic, so at the end also the parameters used for the adjustment are extracted.

Multiplicity and impact parameter by centrality class

The Framework also gives us a table with the results of multiplicity and impact parameter by class of centrality

Centrality %	Multiplicity	Impact parameter
0-10	162-96	2.94 - 5.18
10-20	96-70	5.18 - 6.75
20-30	70-50	6.75-7.39
30-40	50-34	7.39-7.97
40-50	34-23	7.97 - 9.51
50-60	23-15	9.51 - 10.42
60-70	15-9	10.42 - 11.24
70-80	9-5	11.24-12.01
80-100	5-1	12.01-14.10

Comparison of MCGlauber and GammaFit methods

Comparison of multiplicity in centrality classes

Centrality, %	$N_{chMCGlauber}^{min}$	$N_{chMCGlauber}^{max}$	$N_{chGammaFit}^{min}$	$N_{chGammaFit}^{max}$	ΔN_{ch}^{min}	ΔN_{ch}^{max}
[0 - 10]	95	164	96	162	1	2
[10 - 20]	70	95	70	96	0	1
[20 - 30]	51	70	50	70	1	0
[30 - 40]	36	51	34	50	2	1
[40 - 50]	24	36	33	34	9	2
[50 - 60]	15	24	15	23	0	1
[60 - 70]	9	15	9	15	0	0
[70 - 80]	5	9	5	9	0	0
[80 - 90]	2	5	1	5	1	0

In the table, we compare the data of multiplicity and the difference that exists between the two different methods, noting that in multiplicity the two methods are proportional.

Primary Kaons pT (Reco/MC)

Centrality %	$\langle b_{MCGlauber} \rangle$	$\langle b_{GammaFit} \rangle$
0-10	2.54	2.21
10-20	4.37	4.7
20-30	5.69	5.62
30-40	6.74	6.4
40-50	7.68	7.68
50-60	8.55	8.24
60-70	9.35	9.02
70-80	10.11	10.84
80-100	10.99	11.63

The same comparison was made for the average of the impact parameter, it can be seen that there are hardly any differences between the two methods.

Track Efficiency

Track Efficiency

Efficiency:

$$Eff = \frac{p_T^{Reco}}{p_T^{MC}}$$

Deee

Accepted Reconstructed Tracks

From Track Selection:

MC Tracks > 308

Z-Vertex (-100,-70)

Eta (-1, 2)

DCA <= 2

Number of Hits => 20

Impact Parameter b < 13

We divide Reconstructed pT Distributions over MC pT Distribution. For Track Efficiency we are using MonteCarlo association

Montecarlo Tracks

Matching Reco Tracks selection:

Z-Vertex (-100,-70)

Eta (-1 , 2)

Impact Parameter b < 13

Track Efficiency: Primary Particles

Efficiency stay below 1 till pT = 1 GeV/c. For greater values of pT reconstruction is not correct. This pattern is on protons as well.

For Kaons and Pions stays below 1 til pT = 1.2 GeV/c.

Best Tracking Reconstruction is on pT < 1.2 GeV/c

Primary Pions pT Division

Track Efficiency

pT vs ∆ pT

This pT value can be explain with transversal momentum distribution, here we can observe that pT has a lower resolution than 20% when pT values are below 1.2 GeV/c.

Track Efficiency: Secondary Particles

Secondary_Kaons_pT_Division

Secondary_Pions_pT_Division

Track Efficiency

Z (cm) We can observed that most particles 150 are being created on 100 the edges of the detector, so 50 reconstruction its not 0 well done or particles won't collide with the -50 detector and -100therefore we do not obtain enough -150reconstructed tracks -200

All_MC Start RvsZ

All Track Efficiency distribution are just preliminar work, improving them will be continue later on

Track Efficiency

This distribution gives Track Efficiency with respect to z-Vertex and pseudo rapidity, with this distribution we can perform a identification of centrality per event, using Centrality wagon of MpdRoot.

Particle Identification: Primary Particles.

Cuts on MC Tracks: Eta (-1, 2) Impact parameter b < 13 Cuts on Reco Tracks: Eta (-1 , 2) DCA <= 2 NHits => 20 Impact parameter b < 13

Loss energy

For particles identification, reconstructed data were used for energy loss histograms as function of the moment, using the cuts to have more limp distributions

dEdx vs P for only primary particles

Energy losses for different species of particles

Monte carlo identification is used to have energy loss distributions for different species of particles

MC identification

Cuts on Reco Tracks: Eta (-1 , 2) DCA <= 2 NHits => 20 Impact parameter b < 13

Mass^2

The same way to the energy loss histograms were obtained mass^2 histograms

Cuts on Reco Tracks: Eta (-1 , 2) DCA <= 2 NHits => 20 Impact parameter b < 13

41

Bethe Bloch equation

$$\frac{dE}{dx} = \frac{a_0}{\left(\frac{p}{E}\right)^{a_3}} \left(a_1 - \left(\frac{p}{E}\right)^{a_3}\right) - \ln\left(a_2 + \left(\frac{m}{p}\right)^{a_4}\right)$$

An adjustment was made using the Bethe Bloch equation, in order to describe the energy loss that different species of particles have when passing through the detector

Adjustment for power loss

dEdx_proton dE/dx arb.units Entries 18 0.4149 Mean Std Dev 0.2456 ProjectionY of binx=[188,192] [x=0.370..0.420] of En 15 600 400 200 dE/dx arb.units 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 p*q GeV/c

dE/dx parameterization for the proton

Projections on the Y-axis were used to create slices of 5 bins, to have 18 points where they adjusted Gaussians to find the mean value and their respective sigma

Adjustment for different species of particles

Adjustments were then made in the same way for protons, pions and kaons. dE/dx parameterization for the p

Mean and Sigmas value

With the mean value, first the value of its sigmas was added twice and the adjustment projected, then two sigmas were subtracted.

Parameters for the Bethe Bloch equation

By adjusting the mean value more than 2 times and less than 2 times the sigma, values are obtained for the Bethe Bloch equation for different species of particles.

Parameter	$p \max$	$p \min$
p0	-1.3055	-1.338
p1	0.3812	0.8953
p2	1.4613	1.955
p3	1.521	0.7643
p4	1.502	2.4008

Parameter	$\pi^+ \max$	$\pi^+ \min$
p0	-0.694978	-0.4814
p1	-0.5444038	-0.6593
p2	-0.221145	-0.3791
p3	6.0991	6.8815
p4	-0.380694	-0.3162

Parameter	$K^+ \max$	$K^+ \min$
p0	-0.954	-1.1444
p1	-0.0273	0.4036
p2	0.8683	1.2918
p3	2.395	1.2918
p4	0.60565	2.9028

Comparison with reduced magnetic field

dE/dx

25

20

15

10

The adjustments were compared with those of the reduced magnetic field of my colleague Alejandro San Juan, noting that at low pT there are more notable differences for pions, but at higher pT have to follow the same energy losses

dE/dx

Comparation for the pions

ixed Target Mode vs = 2.9 (GeV)

p*a

Comparison with limits and with limits and MC identification

With the adjustments of the mean value and sigma were used to restrain the entry of particles and compared with histograms with the cuts and with MC identification.

pT Rec and pT MC

With the same section that was made for energy loss selecting limits of mean value and two sigmas pT histograms were obtained for reconstructed, also pT histograms were obtained with MC data

pT Rec and pT MC

In order to verify that the selection of particles was as good, pT efficiency histograms were obtained for pions, protons and kaons

Efficiency

50

Future work

In the future it is planned to continue working with the collaboration:

- Making adjustments for energy losses for more particles (antipiones and antikaon)
- Identification for the masses
- Adding studies for centrality by species of particles using PID

Thank you for your attention

Спасибо, до встречи

//MonteCarlo Loop

for (Int_t i = 0; i < NumTracksMC; i++){
 MpdMCTrack *MCTrack = (MpdMCTrack*)fMCTracks->UncheckedAt(i);

Int_t abspdgcode; Double_t pTMC; Double_t P; Double_t Pz; Double_t Eta;

abspdgcode = TMath::Abs(MCTrack->GetPdgCode());

```
pTMC = MCTrack->GetPt();
P = MCTrack->GetP();
```

Pz = MCTrack->GetPz();

Eta = 0.5*TMath::Log((P + Pz)/(P - Pz));

if (abspdgcode == 321 || abspdgcode == 2212 || abspdgcode == 211 || abspdgcode == 11)// kaons, protons, pions, electrons

if(pTMC <= 2.5 && MCTrack->GetMotherId() == -1 && Impactb < 13 && Eta > -1 && Eta < 2)
{//Matching cuts of RecoTracks
MC_pT->Fill(pTMC);
HisMCPT->Fill(pTMC);

ZVertex_Eta_MC->Fill(ZReco,Eta);

if(abspdgcode == 321 || abspdgcode == 2212 || abspdgcode == 211){// kaons, protons, pions CounterMC++; //Counting the number of kaones, protons and pions if (Impactb < 13 && Eta_Reco > -1 && Eta_Reco < 2 && DCA <= 2 && NumHits >= 20)
{ //Impact Parameter Cut
Prof3D[p][3]->Fill(Eta_Reco,Pt_Reco,Diff_Pt);
Prof3D[2][3]->Fill(Eta_Reco,Pt_Reco,Diff_Pt);
Multiplicity++;

HistMCPSKpPi1[0][p][1][0]->Fill(Pt_MC); HistMCPSKpPi1[1][p][1][0]->Fill(Pt_Reco); HistMCPSKpPi1[0][p][3][0]->Fill(Pt_MC); HistMCPSKpPi1[1][p][3][0]->Fill(Pt_Reco);

Prof_2D_Ntracks_zVertex_cuts->Fill(ZReco,NumTracksVertex,DzVertex); ZVertex_Eta_R->Fill(ZReco,Eta_Reco); pT DiffpT Reco cuts->Fill(Pt Reco,Diff Pt);

```
if (Pt_Reco <= 2.5)
{
    HisRecoPT->Fill(Pt_Reco);
    Reco_pT->Fill(Pt_Reco);
    }
}
//Fill Multiplicity cuts on b, eta, DCA, NHits
hRefMult->Fill(Multiplicity);
hBvsRefMult->Fill(Multiplicity);
```

https://github.com/iamaldonado/START_Summer24/blob/main/AdrianLara/Classes_created/principal/Fixed_Analysis.cxx 53

```
if (ZReco > -100 && ZReco < -70)//Cut on Primary Vertex
    if (Impactb < 13 && Eta Reco > -1 && Eta Reco < 2 && DCA <= 2 && NumHits >= 20 )
    { //Impact Parameter Cut
      Multiplicity++;
      if(Pt MC == 0) continue;
      HistMCPSKpPi1[1][p][1][0]->Fill(Pt Reco);
      HistMCPSKpPi1[1][p][3][0]->Fill(Pt_Reco);
      Dpt pt Multi Profile cuts->Fill(Pt Reco,Diff Pt);
DZVertex zVertex->Fill(ZReco,DzVertex);
DZVertex Multi->Fill(Multiplicity,DzVertex);
DZVertex_Multi_Profile->Fill(Multiplicity,DzVertex);
zVertex b->Fill(ZReco,Impactb);
```

Division[0][j][1][k] = new TH1F(hist_name , title_name , HistMCPSKpPi1_bins[k].X , HistMCPSKpPi1_inter[k].Xlow , HistMCPSKpPi1_inter[k].Xup); Division[0][j][1][k]->Divide(HistMCPSKpPi1[1][j][1][k],HistMCPSKpPi1[0][j][1][k]); Division[0][j][1][k]->SetOption("E1");

https://github.com/iamaldonado/START_Summer24/blob/main/AdrianLara/Classes_created/Fixed_TrackEff/Fixed_Track.cxx_54

int ntrmc = mMCTracks -> GetEntries(); for (long int i = 0; i < ntrmc; i++) {</pre>

MpdMCTrack* mctrack = (MpdMCTrack*) mMCTracks -> At(i);

pag	metrack	GetPagcode
prodId	mctrack	GetMotherI
rapidity_mc	mctrack	GetRapidit
pt_mc	mctrack	GetPt();
p_mc	mctrack	GetP();
pz_mc	mctrack	GetPz();

// Monte Carlo track is open for reading

- // Track PDG code
- // Track primacy: -1 = primary, any other = secondary
- // Particle rapidity (CAN BE WRONG!!!)
- // Particle transverse momentum
- // Particle rull momentum
 // Particle momentum z-component
- Double t Eta MC = 0.5 * TMath::Log((p mc + pz mc) / (p mc pz mc + 1e-16));

```
//if (Impactb < 13 && Z > -100 && Z < -75 && Eta_MC < 2 && Eta_MC > -1 ){
if (Impactb < 13 && Eta_MC < 2 && Eta_MC > -1 ){
if (pdg == 2212)
{
    //Proton (p)
    pt_protones_mc-> Fill (pt_mc);
}else if (pdg == 321)
{
    //Kaonplus (kp)
    pt_kaones_mc-> Fill (pt_mc);
}else if (pdg == 211)
{
    //pionplus (pip)
    pt_piones_mc-> Fill (pt_mc);
}
```

https://github.com/iamaldonado/START_Summer24/tree/main/FrankReyes

<pre>int ntr = mKalmanTracks -> GetEntries(); for (long int i = 0; i < ntr; i++) { MpdTrack*mpdtrack = (MpdTrack*) mMpdGlobalTracks->UncheckedAt(i); // Global MpdTpcKalmanTrack *kftrack = (MpdTpcKalmanTrack*) mKalmanTracks->UncheckedAt(i); int kfcharge = kftrack -> Charge(); double p = kftrack -> GetDedx(); float pt_recon = mpdtrack -> GetPt(); </pre>	track // The corresponding TPC Kalman track is also used // for the charge // full momentum and // dE/dx information
<pre>int mcId = kftrack -> GetTrackID(); MpdMCTrack* mctrack = (MpdMCTrack*) mMCTracks -> At(mcId); int pdg = mctrack -> GetPdgCode(); int prodId = mctrack -> GetMotherId();</pre>	<pre>// MpdTpcKalmanTrack::GetTrackID() gives the ID of the corresponding Monte Carlo track // Monte Carlo track is open for reading // Track PDG code // Track primacy: -1 = primary, any other = secondary</pre>

https://github.com/iamaldonado/START_Summer24/tree/main/FrankReyes

//if(RECOMID == 2 && mctrack -> GetMotherId() != -1) continue; //secondary tracks

lt(MC

Double_t proton_min = ((-1.33806) / TMath::Power(p / TMath::Sqrt(p * p + 0.88), (0.76431))) * (((0.895334) - TMath::Power(p / TMath::Sqrt(p * p + 0.88), (0.76431))) - (TMath::Log((1.95555) + T Double_t proton_max = ((-1.30554) / TMath::Power(p / TMath::Sqrt(p * p + 0.88), (1.52176))) * (((0.381237) - TMath::Power(p / TMath::Sqrt(p * p + 0.88), (1.52176))) - (TMath::Log((1.46136) +

Double_t pi_max = ((-0.694978) / TMath::Power(p / TMath::Sqrt(p * p + 0.01949), 6.0991)) * (((-0.544038) - TMath::Power(p / TMath::Sqrt(p * p + 0.01949), 6.0991)) - (TMath::Log((-0.221145) + TMath Double_t pi_min = ((-0.481401) / TMath::Power(p / TMath::Sqrt(p * p + 0.01949), (6.88153))) * (((-0.65936) - TMath::Power(p / TMath::Sqrt(p * p + 0.01949), (6.88153))) - (TMath::Log((-0.37918) + T Double_t kaon_max = ((-0.954003) / TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (2.39503))) * (((-0.0273105) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (2.39503))) - (TMath::Log((0.868322) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) - (TMath::Log((1.29185))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) - (TMath::Log((1.29185))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) * (((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Power(p / TMath::Sqrt(p * p + 0.2437), (0.119658))) + ((-0.403622) - TMath::Powe

https://github.com/iamaldonado/START_Summer24/tree/main/FrankReyes

```
if (Impactb < 13 && Eta Reco > -1 && Eta Reco < 2 && DCA <= 2 && NumHits >= 20 ){ //Cuts
  if (dedx >=proton min && dedx<=proton max ){</pre>
  dedx protonescut -> Fill(p, dedx);
  ptcut protones -> Fill (pt recon);
   if (dedx >=pi min && dedx<=pi max ){</pre>
  dedx pionescut -> Fill(p, dedx);
  ptcut piones -> Fill (pt recon);
  if (dedx >=kaon min && dedx<=kaon max ){</pre>
  dedx kaonescut -> Fill(p, dedx);
  ptcut kaones -> Fill (pt recon);
  h dedx -> Fill(p, dedx);
  h m2 -> Fill(p, mpdtrack -> GetTofMass2());
```

```
if (pdg == 2212)
        //Proton (p)
       h__dedxp->Fill(p, dedx);
       h_m2p -> Fill(p, mpdtrack -> GetTofMass2());
       if (dedx >=proton_min && dedx<=proton_max ){</pre>
       iddedx protonescut -> Fill(p, dedx);
       idptcut_protones -> Fill (pt_recon);
    }else if (pdg == 321)
        //Kaonplus (kp)
       h dedxkp->Fill(p, dedx);
       h m2kp -> Fill(p, mpdtrack -> GetTofMass2());
       if (dedx >=kaon min && dedx<=kaon max ){</pre>
       iddedx kaonescut -> Fill(p, dedx);
        idptcut kaones -> Fill (pt recon);
    }else if (pdg == -321)
       //Kaonminus (km)
       h__dedxkm->Fill(p, dedx);
       h m2km -> Fill(p, mpdtrack -> GetTofMass2());
}else if (pdg == 211)
        //pionplus (pip)
       h dedxpip->Fill(p, dedx);
       h m2pip -> Fill(p, mpdtrack -> GetTofMass2());
       if (dedx >=pi min && dedx<=pi max ){</pre>
       iddedx pionescut -> Fill(p, dedx);
       idptcut piones -> Fill (pt recon);
    }else if (pdg == -211)
        //pionminus (pip)
       h__dedxpim->Fill(p, dedx);
       h_m2pim -> Fill(p, mpdtrack -> GetTofMass2());
         //}//kalman
}//cuts recos
```

https://github.com/iamaldonado/START_Summer24/tree/main/FrankReyes