Project <u>TANGRA</u> TAgged Neutrons & Gamma-Rays

Determination of the Photo-peak Efficiency with Application of Covariance Analysis of γ -Ray Detectors used in TANGRA Project

Pretam Kumar Das^{1,2}

- 1. Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia.
- 2. Department of Physics, Pabna University of Science and Technology, Pabna-6600, Bangladesh.

Introduction

Our (n, xy) reactions using TNM for accurate Data:

- ***** Available data of $(n,x\gamma)$ reactions is not accurate.
- * Angular distributions for low-intense γ-transitions have not been measured before.
- * Eliminate discrepancies between available experimental and evaluated data.
- For some nuclei/gamma transitions the gamma-ray anisotropy hasn't been measured at all.
- ***** Investigate possible differences between neutron and proton scattering.
- Angular anisotropy of the emitted gamma-rays has to be taken into account if the tagged neutron method is used for elemental analysis.
- * Possible upgrade of the setup with LaBr₃(Ce) and HPGe γ-detectors to measure angular distributions.
- * To measure cross-section value of (n,xγ) reaction accurately, we need calibrate our LaBr3(Ce) and HPGe γ-detectors.
- Analyzed the photo-peak efficiencies of HPGe and LaBr₃(Ce) using ²²Na, ⁶⁰Co, ¹³³Ba, ¹³⁷Cs. ¹⁵²Eu and ²²⁸Th.
- ***** Measured the relative photo-peak efficiency using ${}^{35}Cl(n, \gamma){}^{36}Cl$ reactions.
- ***** Generate Monte Carlo simulation (Geant4) and compared with our data.
- * Added the covariance matrix analysis in our results to identify the uncertainty accurately.

Studying of Characteristics of HPGe and LaBr₃ Detectors

We have performed the Characteristics Srudies of HPGe and LaBr3 gamma-rays detectors.

Possible upgrade of the setup with HPGe and LaBr₃(Ce) γ -detectors to measure angular distributions.

Photo-peak Efficiency

Absolute efficiency can be defined as

 $\in_{abs} = \frac{number \ of \ pulses \ recorded}{number \ of \ radiation \ quanta \ emitted \ by \ source}$

Photo-peak efficiency,

$$\epsilon_{exp} = \frac{N}{AI_y T_m} \times 100\%$$

Where,

A= Activity of the Radioactive Source. N=Number of Counts of the Photo-peak. I_Y = Emission Probability T_m = Measuring time. Error in Photo-peak Efficiency,

$$\delta \epsilon_{exp} = \epsilon_{exp} \sqrt{(\frac{\delta N}{N})^2 + (\frac{\delta A}{A})^2 + (\frac{\delta I_Y}{I_Y})^2 + (\frac{\delta T_m}{T_m})^2}$$

Covariance Analysis

> The covariance (correlation) analysis is a mathematical tool that calculates the best estimate of the uncertainty as well as cross-correlations between measured quantities

Photo-peak Efficiency

$$\epsilon_{exp} = \frac{N}{AI_y T_m}$$

There are several sources of uncertainty in the calibration process, which propagate as the uncertainty in the detector's efficiency. This is basically from N, I γ , A. As a result, the detector's efficiency can be expressed as a function of three attributes,

$$\varepsilon = f(N, I\gamma, A)$$

➢ If the measurements of a particular attribute are made independently, then the corresponding micro−correlation matrix is a unit matrix.

Let x1, x2, x3 represent the three attributes, namely, γ -ray abundance, γ -ray peak counts, source activity of the radio nuclide respectively.

If Δx_r is the uncertainty in x_r which is used in measuring efficiency ε_i then the partial uncertainty in ε_i due to the attribute x_r is given by

$$e_{ir} = \frac{\partial \epsilon_i}{\partial x_r} \Delta x_r, \qquad i = 1, 2, 3, 4 \dots 11 \ (for \ 152 - Eu)$$

The covariance matrix for these i-th (11 for Eu-152) measurements is given by

$$(V_{\epsilon})_{ij} = \sum_{r=1}^{W} S_{ijr} e_{ir} e_{jr}$$

where S_{iir} is the micro-correlation between e_{ir} and e_{ir} due to the r-th attribute.

Covariance Matrix Analysis

- For the uncorrelated elements, S_{ijr} can be written as an (n × n) unity matrix and a square matrix of order (n × n) with each element set to "1" for the completely correlated case.
- ✤ For partial correlated cases, S_{ijr} can alternatively be an (n × n) matrix with elements 0 < S_{ijr} < 1.</p>

The micro-correlation matrices for (N, I_{γ}, A) can be designated as,

[1	0	0		[1	1	1		[1	0	0]
0	1	0	,	1	1	1	,	0	1	0
0	0	1		1	1	1		0	0	1

With this information of micro-correlations and partial uncertainties, we generate covariance matrix for efficiencies with Complete information of uncertainties. Infact the total uncertainties in measured efficiencies are given by

$$(\sigma_{\epsilon})_i = \sqrt{(V_{\epsilon})_{ij}}$$

For all i.

Photo-peak Efficiency

Radioactive	Energy	HPGe	HPGe	LaBr3	LaBr3	LaBr3	LaBr3
Source	(keV)	Ch-16	Ch-17	Ch-18	Ch-19	Ch-20	Ch-21
⁶⁰ Co	1173.23	0.068±0.002	0.072±0.0024	0.0166±0.005	0.0158 ± 0.004	0.0198 ± 0.004	0.0162 ± 0.006
	1332.49	0.0626 ± 0.002	0.0664 ± 0.0021	0.0145±0.005	0.0131±0.004	0.016±0.005	0.0135 ± 0.005
²² Na	511.00	0.1079±0.004	0.1185±0.005	0.0284 ± 0.008	0.0283 ± 0.005	0.031±0.006	0.0284 ± 0.006
	1274.5	0.066 ± 0.002	0.066 ± 0.017	0.014±0.006	0.0123 ± 0.005	0.0206 ± 0.005	0.0112 ± 0.006
	276.398	0.1937±0.025	0.211±0.083	0.0616±0.009	0.0752 ± 0.0156	0.0712±0.009	0.0625±0.009
	302.853	0.175 ± 0.020	0.1792±0.020	0.0567±0.008	0.0486 ± 0.006	0.0626 ± 0.009	0.0512 ± 0.006
¹³³ Ba	356.017	0.156 ± 0.007	0.1725±0.009	0.0512 ± 0.008	0.0434 ± 0.005	0.0598±0.009	0.0444 ± 0.005
	383.851	0.152 ± 0.008	0.1652 ± 0.009	0.0395 ± 0.003	0.0395 ± 0.003	0.0485 ± 0.009	0.0383 ± 0.007
¹³⁷ Cs	661.67	0.1043 ± 0.004	0.117±0.005	0.0253 ± 0.009	0.0244 ± 0.008	0.0259 ± 0.007	0.0251 ± 0.005
	121.7817	0.264 ± 0.017	0.287 ± 0.019	0.0993±0.009	0.0867 ± 0.002	0.094 ± 0.002	0.062 ± 0.007
100-	244.6975	0.213±0.013	0.227 ± 0.014	0.071±0.0057	0.0778 ± 0.011	0.086 ± 0.005	0.084±0.009
	344.2785	0.147 ± 0.007	0.158 ± 0.008	0.0587±0.005	0.057 ± 0.009	0.059 ± 0.003	0.058 ± 0.007
	411.1163	0.162 ± 0.016	0.156±0.0153	0.0417±0.004	0.0632±0.009	0.042 ± 0.008	0.046 ± 0.007
	443.965	0.148 ± 0.013	0.151±0.029	0.031 ± 0.004	0.046 ± 0.009	0.035 ± 0.009	0.035 ± 0.009
	778.904	0.083 ± 0.003	0.1296±0.0161				
¹⁵² Eu	867.378	0.084 ± 0.0171	0.087 ± 0.003				
	964.079	0.077±0.003	0.083 ± 0.003	0.0253 ± 0.004	0.057±0.009	0.028 ± 0.005	0.023 ± 0.002
	1085.869	0.078 ± 0.003	0.084 ± 0.003	0.025 ± 0.004	0.0632 ± 0.009	0.027 ± 0.009	0.020 ± 0.009
	1112.074	0.061±0.002	0.065 ± 0.002				
	1408.006	0.061 ± 0.006	0.0601 ± 0.005				
²²⁸ Th	238	0.253 ± 0.016	0.266 ± 0.018	0.0921±0.004	0.092 ± 0.004	0.0831±0.003	0.0842 ± 0.013
	277	0.177±0.014	0.241±0.022	0.0813±0.012	0.077 ± 0.010	0.0701±0.009	0.067 ± 0.01
	509	0.159 ± 0.034	0.1804 ± 0.041	0.0436 ± 0.018	0.0404 ± 0.018	0.0487 ± 0.014	0.021±0.008
	582	0.125 ± 0.006	0.134±0.006	0.0259 ± 0.0005	0.0286±0.007	0.0252 ± 0.0005	0.021±0.008
	726	0.113±0.005	0.122 ± 0.006	0.0186±0.009	0.0212±0.009	0.0217±0.0012	0.020 ± 0.009
	785	0.107±0.007	0.1002 ± 0.005				
	859	0.095 ± 0.004	0.099 ± 0.004				
	1620	0.064±0.003	0.065 ± 0.002				
	2614	0.0478 ± 0.018	0.0695 ± 0.003				

Covariance analysis

The efficiency calibration of the HPGe detector using the radioactive sources of ⁶⁰Co, ²²Na, 133Ba and ¹³⁷Cs for the 9 characteristic gamma energies resulting in the 9×9 covariance matrix of efficiencies of HPGe detector Ch16.

Energy	Efficiency [%]		Partial Un	Partial Uncertainties due to attribute for ⁶⁰ Co, ²² Na, ¹³³ Ba and ¹³⁷ Cs						
(KeV)			$\mathbf{R}_1 = \Delta \mathbf{N}$		$\mathbf{R}_2 = \Delta \mathbf{I}_y$		$R_3 = \Delta A$		(∆∈)	
276.398	0.031	0.03 6 ±0.00166		0.000196269		0.000137448		0.000299637 0		
302.853	0.046	0.0467 ±0.0014		0.000342593		0.00032107		9 0	.00049908	
356.017	0.04	0.04 2 ±0.0011		0.000173783		2.87356E-05		47 0.	000241044	
383.851	0.029	0.0294 ±0.0079		0.000356073		7.53985E-05		2 0.	000393826	
511.00	0.107	0.1079 ±0.0044		0.000150843		0.000119853		15 0.	001629445	
1274.5	0.0661 ±0.0021		0.000154266		8.77487E-05		0.000939638		000956252	
1173.23	0.068	0.0683 ±0.0022		0.000143069		2.05614E-05		28 0.	001036654	
1332.49	0.06	0.0626 ±0.002		0.000136715		1.2517E-05		32 0.	000948669	
661.67	0.107	0.10704±0.0042		0.000310694		0.00024497		18 0.	001612802	
Energy (keV)	Covariance Matrix									
276.398	1.4719E-07									
302.853	5.0695E-08	2.4908E-07								
356.017	4.9304E-08	2.7839E-08	5.8102E-08							
383.851	4.5071E-08	2.5449E-08	2.4751E-08	1.5510E-07						
511.00	0	0	0	0	2.6551E-06					
1274.5	0	0	0	0	1.5204E-06	9.1442E-07				
1173 23	0	0	0	0	0	0	1 0747E-06			
1332.49	0	0	0	0	0	0	9.6457E-07	8.999F-07		
661.67	0	0	0	0	0	0	0	0	2.6011E-06	

Photo-peak Efficiency of HPGe and LaBr3 Detectors

Energy in [keV]

Energy in [keV]

Energy in [keV]

Gamma-Ray Spectrum of n+NaCl, Reaction

Energy spectra in HPGe for nDet01

Measurement of Photo-peaks

Relative Photo-peak Efficiency

 N_{Corr} be the corrected number of events of the Photo-peak, N_{norm} be the normalization of the number of events of the photo-peaks.

$$N_{norm} = \frac{N_{Corr}}{N_{max}} \times 100\%$$

Ratio,
$$R = \frac{N_{norm}}{I_R}$$

Where, I_R =Relative Intensity.

Relative Photo-peak Efficiency of ³⁵Cl,

$$\epsilon_{Rel} = R \times \epsilon_p$$

Where, ϵ_p is the calculated photo-peak efficiency of 60 Co of our experiment.

Relative Photo-peak Efficiency for HPGe detector

Photo-peak Efficiency for HPGe (Det-01) Ch-16

Photo-peak Efficiency [%] 152Eu 0.04 22Na 0.035 137Cs 60Co 0.03 133Ba 35CI 0.025 Successfully calculated the 0.02 detection efficiency of HPGe 0.015 and LaBr3 detectors up to 0.01 9MeV 0.005 0 Ō 1000 2000 3000 4000 5000 6000 7000 8000 9000 Photo-peak Efficiency for HPGe (Det-02) Ch-17 Photo-peak Efficiency [%] 152Eu 0.04 22Na 137Cs 0.035 60Co 0.03 133Ba 35CI 0.025 0.02 0.015 0.01 0.005 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 Energy in [keV]

Relative Photo-peak Efficiency for LaBr3 detector

Photo-peak Efficiency for LaBr (Det-02) Ch-19

Summary

- * I've conducted the experiment to study the characteristics of HPGe and LaBr3 γ-rays detectors used in TANGRA project.
- ✤ As part of this ongoing research program, I've measured the photopeak efficiencies of the HPGe and LaBr₃(Ce) detectors within a newly constructed experimental facility.
- Verify also calculated the relative photo-peak efficiency of HPGe and LaBr₃(Ce) detector using the standard γ-ray point sources including ²²Na,⁶⁰Co, ¹³³Ba, ¹³⁷Cs, ¹⁵²Eu and as well as the ³⁵Cl(n,γ)³⁶Cl reaction.
- I've generated the monte carlo simulation Geant4 and which is found in comparable agreement with data.
- Now, we know the efficiency of HPGe and LaBr3 γ-rays detectors used in TANGRA project for upto 10MeV range.
- I've added the Covarinace Matrix analysis in our results to calculate the uncertatinty of photo-peak efficiency accurately.

Thank You for Your Attention

Back-Up

Characteristics of Gamma-Sources

The number of counts of photo peak can be calculated from the below equation:

$$N = N_{Raw} - N_{BG}$$

Where N_{Raw} is the raw data and N_{BG} is the background data.

Figure shows the fitting peaks to count the number of events in the photopeak.

Photo-peak Efficiency

GEANT4 Simulation

Figure (a) Experimental Set-up of TANGRA project in Geant4 Simulation (b) Simulated experimental set-up with gamma rays (green line).

Measurement of Relative Photo-peak Efficiency

Possible upgrade of the setup with HPGe and LaBr₃(Ce) γ -detectors to measure angular distributions.

Measurement of Relative Photo-peak Efficiency

