

Report of the technical coordinator

Alexander Korzenev, JINR LHEP

SPD Collaboration Meeting Dubna, Nov 5, 2024

Outline

- Infrastructure
 - Construction work in the SPD hall
 - Installation of rail system
- Progress on
 - Magnetic system
 - Range System (RS)
 - Straw Tracker (ST) barrel & endcaps
 - MicroMegas (MM)
 - EM calorimeter (ECal)
 - Beam-beam-counter (BBC)
 - Detector cooling system
 - Zero Degree Calorimeter (ZDC)
 - Time-of-Flight (TOF)
 - Focusing Aerogel RICH (FARICH)
- Conclusion

Construction work in the SPD hall

Construction work in the SPD hall

Rail positioning accuracy measured in October in mm:

Requirement for the smooth motion of roller skates: ± 0.5 mm

Construction work in the SPD hall

🕅 ТРУЗОПОДЬЕМ

3,27

3,21

Until we start assembling the detector, this area will be filled with concrete blocks with a total weight of 1200 tons.

Stage-1 of the experiment (readiness by 2030)

Solenoid+Dewar, BINP responsibility

(the TDR contract was signed earlier this year)

LHe supply system, JINR responsibility

(contract for development next year)

(is being designed, production in 2026)

Cryocomplex, JINR responsibility

(foundation installation next year)

Magnetic system Pyata E., Antokhin E., Bedareva T., Bragin.A., Pivovarov S.

Progress on superconducting solenoid

- Calculations were made for the transition of the solenoid to a superconducting state:
 - the maximum possible temperature with a superconducting winding and internal electric voltage were obtained
 - the contribution to the winding protection from the support cylinder and aluminum strips made of ultra-pure aluminum was estimated
- Design of the coils, proximity cryogenics, power supply system is in progress
- Uncertainties related to magnetic forces were clarified.

Cross-check for the magnetic field and forces

Magnetic field calculation

- 16 symmetries in 3D modeling construction are used to reduce the computational complexity
- There were 5'961'201 nodes in the 1/16 part of the magnet
- Consistent with results obtained by BINP group

Forces acting on the coils were determined using Maxwell Stress calculations

Longitudinal Z+5mm displacement: 1/8 partitioning of the magnetic system, 11'935'969 nodes

Transverse X+5mm displacement: 1/4 partitioning of the magnetic system, 23'819'810 nodes

Offset value	Force component	Left coil	Central coil	Right coil
0 mm	Fy	0	0	0
Z+5mm (longitud.)	Fz	5.16 MN	1.9 kN	-5.15 MN
X+5mm (transverse)	Fx	6.3 kN	1.4 kN	6.3 kN

Forces are within the elastic deformation limits of the supports holding the "cold mass"

Schedule for Solenoid+Dewar production

	20	024		20	J25	· · · · ·		20)26		20)27		2028				
						Pro	ject mar	nagemen	t and te	sting								
TDR						· · ·										1		
Plan Review														,		1		
Prelim. Design Review						<u> </u>								· · · · · · · · · · · · · · · · · · ·		1		
SAT full solenoid						<u> </u>												
				(Conduct	or							 					
Contract with external firm		Τ	Τ			<u> </u>					1					1		
FDR conductor						<u> </u> '					1							
Production by exter. firm											1							
FAT conductor						<u> </u>							 					
						Cr	yostat ar	nd cold n	nass									
Cryostat design																		
FDR cryostat						<u> </u>												
Procurement & production																		
FAT cryostat																		
SAT cryostat																		
					Cont	rol dewa	r and co	rrespond	ling cryo	genics								
Dewar design						<u> </u>												
Dewar vacuum equipment														<u> </u>				
FDR cryostat														/				
FAT dewar																		
SAT dewar																		
					El	ectrical	compone	nts										
Contract elec. component						<u> </u>												
FDR elec. component						<u> </u>												
Procurement																		
FAT elec. component																		
					Mag	net alarn	safety s	ystem										
FDR safety system						<u> </u>												
Procurement						\Box '												
FAT safety system																		
						Coil w	/inding											
Design coil winding						<u> </u>												
Tooling design																		
FDR coil						<u> </u>												
Procurement																		
FAT coil winding		Τ				<u> </u>												
Cold mass integration						, T												

Developing the power structure of the yoke

S.Gerasimov

	20	24		20	25		20	26		20	27		20	28	-
3D model development															
Preparation of design documentation															
Supplier search, tender, contract signing															
Production															
Shipment to Dubna															
Installation in SPD															

D.Nikiforov

Solenoid+Dewar, responsibility of BINP

Helium supply cryogenic system

Refrigerator (He liquefier), responsibility of JINR

- Unlike the MPD, the liquid helium supply system SPD is planned to be designed as autonomous.
- Contract for design work will be signed next year. See talk of A.Ponamarev tomorrow.

D.Nikiforov

LHe cryogenic system, cryocomplex, pipelines

* Commissioning is only possible with the magnetic yoke installed.

SPD magnetic system

- According to present (optimistic) estimates:
 - Solenoid + Dewar ready in 2029
 - Magnet return yoke ready in 2028
 - He cryogenic system ready in 2029
 - Cryocomplex ready in 2026
- Commissioning in 2029-2030
- Publication of the concept of the SPD magnetic system is being prepared. It will be submitted to the journal later this year.

Session on Wednesday morning

10:00	Status of the SPD Solenoid Magnet Development	Sergey Pivovarov
		10:00 - 10:30
	Quench Analysis of the SPD Solenoid	Alexey Bragin
		10:30 - 10:50
	Control Dewar design	Tatiana Bedareva
11:00		10:50 - 11:10
	Cryogenic system	Mr Sergey Vizgalov
		11:10 - 11:30

Range (muon) System project

Project leader	JINR: G.Alexeev
Magnet yoke design and MDT detecting planes assembling and mounting into slots of the yoke	JINR: A.Samartsev, E.Boltushkin, S.Kakurin, S.Gerasimov
Gas system (as part of DCS)	MSU: K.Korolev + 1
Analog and digital electronics	JINR: N.Zhuravlev + 4 Minsk: M.Baturitsky + 3, A.Solin +1 MSU: A.Chepurnov, A.Nikolaev, A.Aynikeev + 3
MDT detectors and strip boards production and assembling	JINR: V.Abazov, A.Piskun, S.Kutuzov, I.Prokhorov, Yu.Vertogradova
Software and analysis	JINR: A. Verkheev, L. Vertogradov. MEPhI: A. Osterov.

	2025	2026	2027	2028	2029
	l q 2025 II q 2025 III q 2025 IV q	2026 l q 2026 ll q 2026 ll q 2026 lV q	2027 l q 2027 ll q 2027 ll q	2027 IV q 2028 I q 2028 II q 2028 II q	2028 IV q 2029 I q 2029 II q 2029 III q
Month	2 3 4 5 6 7 8 9 10 11 1	2 1 2 3 4 5 6 7 8 9 10 11	12 1 2 3 4 5 6 7 8 9	9 10 11 12 1 2 3 4 5 6 7 8	9 10 11 12 1 2 3 4 5 6 7 8 9
Yoke production					
Final engineering design					
Detailed engineering design for external contract					
Construction of the yoke					
MDTs production					
Preparation of the MDTs workshop					
Purchase of materials for MDT mass production					
R&D for strip readout					
Purchase of materials for strip mass production					
MDT mass production					
Strip boards mass production					
Assembly of detector planes					
Mounting of detector planes into RS modules					
Full RS comissioning					
Analog FEE					
Ampl-8.53/11R R&D					
Dics-8.13 R&D					
Ampl/Disc mass production					
A_FEE cards proto development					
A_FEE prototype cards tests with MDT detectors					
Procurement of components					
A_FEE mass production (+ testing/debugging)					
Installation and debugging in RS/SPD					
Commissioning					
Digital FEE					
Dig_FEE & L1 DAQ					
R&D of final Dig_FEE					
Firmware for Dig_FEE					
Purchase of components for Dig_FEE mass production					
Production & debugging					
Dig_FEE test with DAQ L1					
Installation of Dig_FEE modules to RS and debugging					
Commissioning with SPD DAQ					

Current RS group activities

- RS prototype is mounted in beam position on support/transportation system at Nuclotron test beam area
- Design of detecting plane (new strip board concept) is developing
- Amplifier chip (Ampl-8.53) preproduction at INTEGRAL (Minsk) is being monitored
- Currently working on establishing connection of RS prototype digital module with prototype L1/DAQ concentrator
- Preparations for deployment of equipment for MDTs mass production area for tuning the equipment is found
- Participation in development of PID algorithms for pion-to-muon separation

Mockup of detecting plane (MDTs, FEE cards, power distribution fiberglass board, cables) is assembled

Straw-barrel project

Project leaders	T.Enik (JINR), E.Kuznetsova (PNPI), Y.Mukhamejanov (JINR, INP).
Power frame and assembling procedure	JINR: K.Basharina, Y.Ershov, A.Salamatin, S.Sukhovarov.
Gas system	JINR: V.Perelygin, V.Karjavine, D.Kozlov.
Electronics	JINR: V.Bautin, M.Buryakov, N.Gorbunov, A.Golunov, V.Karjavine, S.Kochepasov, O.Minko, K.Salamatin BSU: A.Solin, A.Solin.
Tube production and assembling	JINR: Y.Kambar, S.Romakhov, A.Rymshina. INP: O.Kalikulov, N.Yerezhep, S.Shinbulatov, Sh.Utei, A.Baktoraz, S.Adilkhan
Software and analysis	JINR: R.Akhunzyanov, A.Chukanov, A.Lapkin, A.Mukhamejanova (JINR, INP), D.Myktybekov (JINR, INP), O.Samoylov, D.Baigarashev (JINR, INP), D.Kereibay (JINR, INP) PNPI: S.Bulanova, E.Mosolova, D.Sosnov, A.Zelenov.

	T.Enik, 30 oct 2024		2	202	24				20	25				2	202	6			2	202	27			2	02	28		2	202	29
		2024 Iq	2024 11 0	q 20)24 III q	2024 IV q	2025 I q	2025	5 II q	2025 III q	2025	IV q	2026 Iq	2026 11	2026	lli q	2026 IV q	2027 Iq	2027 II	q 20	27 III q	2027 IV q	2028 I q	2028 II q	202	28 III q	2028 IV q	2029 l q	20	029 II q
	Month	1 2	3 4	5 6	78	9 10 11	12 1 2	2 3 4	56	78	9 10	11 12	1 2	3 4	5 6 7	89	10 11	12 1 2	3 4	56	7 8 9	10 11	12 1 2	3 4 5	6	7 8	9 10 11	12 1	2 3	4 5 6
	prototyping - prototypes of individual elements																													
	prototyping - tracker octant prototype																													
	octant prototype testing																													
	prototyping of the tracker frame																													
	Production of the first traker frame																													
	Development of the straw mass production lines																													
	straw mass production																													
	quality control of the produced straws																													
	octant production																													
	octant quality control and final assembly																													
\rightarrow	tracker installation																													
	gas supply system R&D																													
	gas supply system prototyping																													
	gas system production, maintenance and testing																													
	readout electronics R&D																													
	readout electronics production, maintenance and testing																												_	
	LV and HV prototyping																													
	LV and HV production, maintenance and testing																													

Issues that have to be solved

- Octants are changed to sextants, as it is in the straw detector of PANDA (better packing factor?)
- Radial ribs can be omitted
- Still, the assembling procedure is missing
- It will be very useful to make a real-size mockup (~4k channels) with shorter tubes

- Gas system suitable for operating a large size detector to be developed
- Regulation of the differential pressure and composition of the mixture while monitoring its temperature, oxygen and water vapor contents.
- This can be a serious problem, since many components have to be ordered from abroad

G.Kekelidze V.Kramorenko

Progress on Straw-endcap

Small scale prototype, \emptyset =1 m

- The purpose of building the prototype with 80 tubes and aluminum frame is to test the assembly technology:
 - 1. stretching straws before gluing them to the frame
 - 2. keep straws in a humid environment before gluing
- Behaviours of the tubes will be studied throughout the year in order to choose the best technology

Full scale prototype, \emptyset =1.6 m

- Fiberglass frame of full size with mounted lodgements for tubes will be delivered by the end of this year
- Electronics, plugs, pins, films have been ordered and are being produced.

	2024	2025	2026	2027	2028	2029
	2024 III q 2024 IV q	2025 l q 2025 ll q 2025 ll q 2025 ll q 2025 lV q	2026 l q 2026 ll q 2026 ll q 2026 lV q	2027 l q 2027 ll q 2027 ll q 2027 ll q	2028 l.q 2028 ll.q 2028 ll.q 2028 lV.q 2	2029 l q 2029 ll q
Month	7 8 9 10 11 12	1 2 3 4 5 6 7 8 9 10 11	12 1 2 3 4 5 6 7 8 9 10 11	12 1 2 3 4 5 6 7 8 9 10 11 1	2 1 2 3 4 5 6 7 8 9 10 11 12	1 2 3 4 5 6
End-plug production						
Pin production (12 000 pcs.)						
Purchase of polyimide film 40 kg						
Polyimide film processing						
Production of 2 1-meter prototypes (no FEE)						
Development of FFE for full-scale prototype						
Production of frame for full-scale prototype						
Изготовление строу 6000 x 2,5 м						
Production of full-scale prototype						
Update of technical documantation						
Production of the detector frames						
Development of technological tools						
Fabrication of technological tools						
Detector mass production						
Frame assembling			1 2 3 4 5	6 7 8 9 10 11	12 13 14 15 16	
Straw installation to the frame						
Straw cutting						
Installation of spacers to wires						
Installation of wires into detector						
Gluing of end plugs						
Connection to the gas system						
leak test						
Installation of FEE						
Soldering of chambers						
Fe-55 test of chambers						
Chambers full testing						
FEE development and production						
Assembling of chambers into blocks						

MicroMeGaS-based central tracker

Project leader	JINR: D.Dedovich
Micromegas detector production	JINR: A.Gongadze, I.Liashko, N.Koviazina
Micromegas PCB development	JINR: U.Kruchenak
Detector simulation	JINR: N.Koviazina
Software and analysis	JINR: D.Dedovich, N.Koviazina
FE electronic	JINR: A.Boikov, Svetlana Tereshchenko
ASIC sertification	TSU: S.Filimonov +3

First prototype of cylindrical MM chamber (early 2024)

		2	02	24					20)25	5						2	20	26	6						2	02	27						2(02	8				2	02	29	
	2024	III q	20)24 IV (q	2025	q	2025	ll q	2025	lll q	2025	IV q	202	26 I q	2	026 II q	1	2026	lll q	2026	IV q	202	?7 q	202	7 q	202	27 III q	202	7 IV q	202	28 I q	2028	llq	2028	lli q	202	28 IV q	20	029 l q	202	29 II q	
Month	7	8	9	10 1	1 12	1	2	3 4	5	6 7	8	9 10	11	12	1 2	3	4	5 6	7	8	9 10	11	12	1 2	3	4 5	6	7 8	9 1	0 11	12	1 2	3 4	5	6 7	8	9 1	0 11	12	1 2	3	4 5	j 6
Realistic prototypes production&test														Т									Т																				
Support structure development																																											
MM parameters finalization																																											
Cooling R&D																																											
M0 prototype production																																											
MM, cooling, support design finalization																																											
Cooling system component production																																											
Serial PCB production														Т																													
Serial DLC coating																																											
FE development & prototype test																																											
Pre-serial FE production& test																																											
FE serial production																							Т																				
Modules production & test																																											
Assembling&test																																											

D.Dedovich

MicroMeGaS prototype results obtained in PS/T9

- First experience of using prototype with multichannel electronics: efficiency, coordinate resolution, real noise, homogeneity of properties, cluster size, etc.
- Study of the influence of pillar geometry on efficiency and resolution
- Study of the effect of strip pitch and DLC coating resistance on resolution: 2 pitch options and 2 DLC coating options

- Intrinsic efficiency and resolution of Dubna MM chambers are excellent
- 1 mm pitch pillar structure does not compromise MM efficiency and resolution

Progress on ECal (1-st stage, 256 cells)

This Figure shows in red <u>64 modules</u>, consisting of 4 cells each. The weight of this assembly is 597 kg. This will require 130 kg of polystyrene, 465 kg of lead, as well as additives: 1.95 kg of P-terphenyl and 65 g. POPOP, and 2000 meters WLS fiber type Y-11.

It is 1/20 part of end-cap and taken time of 36 Days to prepared 51200 scintillator plates.

To read this setup, we need four ADC64 - 64channel amplitude encoders, as well as 16 boards of 16-channel amplifiers and bias voltage regulators.

*Estimate for endcaps only, O.Gavrishchuk

Year: 20++	24	25	26	27	28	29	30	31	32	33	34
						Power frame					
Design Frame											
Frame production											
						Electronics			-		
ADC R&D											
ADC Production											
ADC Cooling											
Slow Control											
					ECal	module produ	iction		•		
WLS purchase											
MPPC purchase											
Modules R&D											
Scintillator.Product.											
Lead Abs. Production											
Mod. Assembling											
Modules Testig											
ECAL installation											
Comissioning											

O.Gavrishchuk

Progress on ECal (endcaps, 1-st stage)

4 scintillator plates after injection molding machine

Beam-Beam-Counter (BBC) project

Project leader	V.Ladygin (JINR)	FEE, FPGA based TDC design and	MEPhI: P.Nekrasov, A.Melekesov	
Deputy	P.Teterin (MEPhI)		JINR: A.Isupov, S.Reznikov, A.Tishevsky, I.Volkov	
Manufacture, tests, assembling	MEPhI: A.Zakharov, Ph.Dubinin, P.Teterin JINR: Yu.Gurchin, A.Tishevsky, A.Livanov	BBC interface to SPD DAQ	JINR: A.Isupov	
		Express off-line and data analysis	JINR: I.Volkov, K.Volkova MEPhI: E Soldatov	
	JINR: A.Isupov, S.Reznikov, I.Volkov			
(Phase0)		Simulation	JINR: A.Terekhin, K.Volkova MEPhI: A.Durov, A.Levkov, E.Soldatov	

	2024	2025	2026
	2024 III q 2024 IV q 2025	l q 2025 ll q 2025 ll q 2025 lV q	2026 l q 2026 ll q 2026 lll q 2026 lV q
Month	7 8 9 10 11 12 1	2 3 4 5 6 7 8 9 10 11	12 1 2 3 4 5 6 7 8 9 10 11 12
Estimation of light loss at fiber bending			
Fabrication and testing of samples with different optical cement options			
Selection of final assembly components			
Fabrication of a three-layer base for the prototype			
Evaluation of rigidity and strength of the framework			
Development of 2 sector prototypes [2*7 tiles]			
Development of trigger counters for tests			
Calibrating the energy scale of DT5202			
Determining the optimum thresholds for DT5202			
Temperature dependence estimation and its consideration in tests			
Test of prototypes with cosmics		1 2	
Data analysis and interpretation of results			
Tests with SiPM Hamamatsu (1.3x1.3 mm^2)			
Development of the inner part of the detector			
Development of mapping			
Development of 2-rings detector prototype [2*(7*16) =224 tiles]			
Fabrication of frame for prototype			
Fabrication of a five-layer base for the prototype			
Implementation of composite bushings for fasteners, and milling			
Installing the base into the frame			
Design and manufacture of optical connector modules (WLS <-> transparent fiber)			
Design and manufacture of connectors (transparent fiber <-> SiPM)			
Design and manufacture of PCB for SiPMs			
Testing connectors and PCBs			
Prototype beam test			
Beam test data analysis			
Coordinating the output of the detector cables to the BBC control room			
Assembly of 2 rings of a full-scale detector			
Fabrication of frame (2 parts)			
Fabrication of a five-layer base for the detector			
Implementation of composite bushings for fasteners, and milling			
Installing the base into the frame			
Full test of chambers			
full-test data analysis			
Disassembling the detectors			
Transferring detectors to SPD			
Assembling the detectors			
Functional checks and tests			

A. Tishevsky

Progress on BBC prototyping

(1/16 of wheel) design

WLS-SiPM test

connector couple

Grooved carbon fiber backplate v1 prototype and updated design

- - 2 × reduced sector prototype
- Currently we have in hands 2 small sector prototypes of 8 tiles with CKTN B and SG BCF92 fiber assembled on carbon fiber backplate
- We plan to produce a full wheel with reduced sectors in the middle of 2025

Prototypes test with CAEN FERS-5200

Detector cooling system

- Water tanks, manifolds, pump modules to be installed on a platform, on the opposite side from the electronics one
- Design of supporting platforms (for electronics and water cooling) will begin after magnet design is completed.

- Goal is to ensure cooling of the electronics and thermal stabilization of the working volume of gas.
- Leakless regime of operation: absolute pressure in pipes lower then 1 atm.
- Next year we plan to start working with the INP BSU team (A.Fedotov, I.Zur and others), which is charge of the MPD cooling system.
- Advantage of a later commissioned SPD is the ability to eliminate weak points in the MPD design.

ITEP: I.Alekseev +4 JINR: S.Shimanskiy, V.Poliakov

Progress in developing the ZDC detector

- Original plan for the first stage of ZDC was: 6 planes with trapezoid geometry and 320 mm thick copper radiator. It was supposed to be prepared for installation by summer 2025.
- Could be done by March: a compact version with the same as in test SiPM boards, 3 layers with a copper or stainless steel radiator about 3x3cm = 9cm total thickness

V.Chmill

Progress on TOF

RUNO chips have been produced

- Very low impedance chip for the MRPC readout, a complete analogue of the NINO chip
- Developed by MEPhI in collaboration with JINR (E.Usenko as a leader) in 2022
- In 2023, produced by "Mikron" as a part of MPW project for Russian universities
- Chips are received in 2024, tests are ongoi

Evaluation board E.Usenko, M.Buryakov, 2024

FARICH system of SPD

<u>SPD – FARICH system concept</u>

Aerogel:

• 2 end-caps × 74 tiles (4 form-factors)

• 4-layer focusing aerogel:

- $-n_{max} \le 1.05$ (to be optimized soon)
- Total thickness 35÷40 (to be optimized)
- Focus distance ~20 cm

Position-sensitive MCP-PMT:

- 2 × 550 PMTs ~51×51 mm² (pixel 6×6 mm²), i.e. N6021 (NNVT)
- 2 × 2200 PMTs ~33×33 mm²
 (pixel 3×3 mm²) from Ekran FEP (soon)

FARICH prototype based on MCP PMT:

- Technical drawings are ready
- Materials, components and equipment are purchased
- Production was started at the BINP
- Readout system is ready
- 4-layer focusing aerogel is ready
- MCP PMTs are waiting soon!!!

The first rectangular MCP PMT produced in Russia:

 $N_{pe}(\beta=1)$

N._ (ROI)=12.84±0.0

- Construction and design is developed
- All details and components are produced in Russia
- All technological processes are developed and realized
- First samples for test will be available until the end of 2024

- 33×33 mm² total area
- 27×27 mm² sensitive area
- 8×8 pixels with 3×3 mm size

Expected system parameters

(obtained in G₄ simulation)

FEE and DAQ on Tuesday

15:00	Current status of L1 concentrator	Александр Бойков	Status of BBC developments @MEPhl LHEP-215/241 - video roorn, VBLHEP	Arseniy Zakharov 15:00 - 15:20
	L2 concentrator firmware	Vladislav Borchsh	Status of BBC developments @JINR	Aleksey Tishevsky
			LHEP-215/241 - video room, VBLHEP	15:20 - 15:40
	Cofee break			
16:00	Conference Hall, Building 215, VBLHEF	, JINR, Dubna		15:40 - 16:10
	Current status of TSS development. White Rabbit precisio Olga Mamoutova		WLS Studies	Filipp Dubinin
			LHEP-215/241 - video room, VBLHEP	16:10 - 16:30
	Current status of TSS development. TSS control protocol		TDC based on FPGA for BBC	P. Nekrasov
	Dmitry Ryabikov		LHEP-215/241 - video room, VBLHEP	16:30 - 16:50
	FEE for straw readout	Vitaly Bautin	Application of DT5215 concentrator for	ВВС Иван Волков
17:00			LHEP-215/241 - video room, VBLHEP	16:50 - 17:10
	Development of ASIC	Alexander Solin	Simulation of Xe124+W in fixed target mode for SPD BB Ксения Волкова	
	Simulation of pp and dd interactions for BBC prototype			Arkadiy Terekhin
	LHEP-215/241 - video room, VBLHEP			17:30 - 17:50
	Discussion & AOB			
18:00	LHEP-215/241 - video room, VBLHEP			17:50 - 18:10

Dense agenda for this meeting!

Magnet & detectors on Wednesday

10:00	Status of the SPD Solenoid Magnet Development	Sergey Pivovarov
		10:00 - 10:30
	Quench Analysis of the SPD Solenoid	Alexey Bragin
		10:30 - 10:50
11.00	Control Dewar design	Tatiana Bedareva
11:00		10:50 - 11:10
	Cryogenic system	Andrey Ponomarev
		11:10 - 11:30
	Coffee break	
	Building 215, VBLHEP, JINR, Dubna	11:30 - 12:00
12:00	RS status report	Gennady Alexeev
		12:00 - 12:20
	ECal status report	Dr Олег Гаврищук
		12:20 - 12:40
	MicroMegas status report	Dmitry Dedovich
		12:40 - 13:00
13:00	Lunch	
		13:00 - 14:00
14:00	Straw-barrel status report	Temur Enik
		14:00 - 14:20
	Straw beam tests	Dmitry Sosnov
		14:20 - 14:40
	Straw-endcap status report	Victor Kramarenko
		14:40 - 15:00
15:00	Join research and development AANL-BUDKER-NICA(SPD) for Aerogel Cherenkov detector	Arthur Mkrtchyan
		15:00 - 15:20
	Status of Cherenkov counters prototyping for the SPD experiment	Alexander Barnyakov
		15:20 - 15:40
	Coffee break	
16.00	Conference Hall, Building 215, VBLHEP, JINR, Dubna	15:40 - 16:10
16:00		Волорий Иниль
		16:10 - 16:30
	BPC status report	Alaksay Tisbaysky
	Do status report	16:30 - 16:50
	7DC status report	
17:00		16:50 - 17:10
	On possible development of monolithic active sizel concore	Dr Sergey Vipogradey
	on possible development of monolithic active pixel sensors	17.10 - 17.30
	Nodernization and testing of a thermal showles with an executing terms at reasons of 50	+ 50 C Alexen Departic
	Modernization and testing of a thermal chamber with an operating temperature range of -50	+ 50 C Alexey Popovich
		17:30 - 17:50

Concluding remarks

- Some progress is being made in many subsystems
- Special attention should be paid to the detectors of the 1st stage of the experiment
 - *Lack of qualified engineering personnel* capable of doing the work
- According to present schedule we can have the 1-st stage detector by the end of this decade. Clear planning required from corresponding groups.

backup

