

Straw testbeam results

Dmitry Sosnov on behalf of SPD Tracker group

VIII SPD Collaboration Meeting Dubna, 06.11.2024

Contents

SPS H4 testbeam goals

The main goal – to probe the best achievable spatial resolution:

- Greatly improved reference tracking resolution (AZALEA tracker)
- Measurements with two different ASIC
 - VMM3 (Mu2E readout board)
 - ASD of ATLAS sMDT
- Measurements in the magnetic field (AZALEA + straw ASD readout in Goliath magnet)

PS T9 testbeam goals

The main goal – to probe the best achievable charge resolution:

- \bullet Measurements with a custom charge sensitive pre-amplifier with ${\sim}500$ ns integration time, developed by O. Minko, JINR
- Low momentum partiles:
 - Hadrons 0.3, 0.5, 1, 2 GeV/c
 - Electrons: 2 GeV/c
- Additional measurements: spatial resolution for 15 and 5 GeV hadrons with Mu2E and ASD readout

Test with first SPD tracker prototype with stereo planes

New stereo-prototype (μ Straw Tracker, μ ST):

- 4 double-layer planes: Y-U-V-Y
- Stereo angle: 2°

SPS H4 testbeam setup

- Reference tracking systems:
 - Small acceptance, high precision
 - AZALEA tracker
 - $\bullet\,$ Large acceptance, ${\sim}100\mu{\rm m}$ resolution
 - Legacy MicroMegas, 250 μ m pitch
 - sMDT reference tracker
- Straw prototypes
 - Combined Straw prototype (20mm, 10mm & 5mm straws)
 - μST (10mm, Y-U-V-Y)
- Readout
 - Mu2E board (VMM3-based)
 - sMDT (ASD based)

The UM sMDT telescope 8-layers in x and y directions

Data obtained

- Small acceptance:
 - $\bullet~\rm VMM3/ASD$ & $\mu\rm ST,~gas~Ar:\rm CO_2$ 70:30 and 93:7
 - ASD & $\mu {\rm ST},$ gas Ar:CO_2 93:7, magnet 1T/1.5T
 - ASD & μ ST, gas Ar:CO₂ 70:30, pressure +1/2Bar
- Large acceptance
 - ASD & Combined Straw prototype, Ar:CO₂ 70:30

SPS Testbeam, tracking resolution

AZALEA tracker

- AZALEA: The AIDA-2020 Zero-suppressed Acquisition Located at the East-Area telescope
- The AZALEA tracker is one of the devices developed within of the EUDET project.
- Consist of:
 - 6 pixel detector planes with MIMOSA 26 sensors (18.4µm pitch)
 - FEI4 Si plane, providing trigger
 - Trigger Logic Unit (TLU)
- Track resolution: ${\sim}6\mu$ m

Track resolution for muons at SPS H4

SPS Testbeam: ASICs used

Straw readout under the test:

- Mu2E board (VMM3-based), used with 3mV/fC, 25ns peaking time
- ATLAS sMDT readout (ASD-based)

The main difference:

- \bullet ASD: ${\sim}2$ times shorter peaking time
- ASD: \sim 3 times larger electronic gain
- Additionaly, ASD capable of two charge collection modes: Wilkinson ADC and Time over Threshold. ToT mode analysis in the work.

For details, see V. Bautin talk (05.11.2024)

ASICs used

VMM3 parameters

Number of channels	64
Clock frequency	1080 MHz
Input capacitance	<300 pF
Dynamic range	up to 2 pC
Gain	0.5, 1, 3, 4.5, 6, 9, 12, 16 mV/fC
Peaking time	25 / 50 / 100 / 200 ns
ENC (energy branch)	<3000 e ⁻
TDC binning	~1 ns
Maximum event rate	140 kHz/ch
Consumption	15 mW/ch

ASD parameters

ATLAS sMDT ASD Spec.	
Technology	CMOS 130nm
#. of channels	8
Power consumption	10 mA/ch
Input capacitance	60pF
Shaper	bipolar
Peaking time	12 ns
Dynamic range	5-100 fC
sensitivity	8 mV/fC
ENC	1 fC
Charge readout	ADC, ToT

The R-T dependency plot

VMM3

SPS Testbeam results: time resolution

Time resolution

Time resolution:

- \bullet VMM3 ASIC: \sim 8-9 ns
 - Not calibrated
 - Larger peaking time
- \bullet ASD ASIC: \sim 3-4 ns

Analysis and calibration is ongoing

SPS Testbeam results: spatial resolution

Spatial resolution

Analysis ongoing. Prompt reco with data-driven method: the first results for spatial resolution (simple mean for range $\pm [1 - 5]$ mm is shown): • VMM3 ASIC, straw 7: 270 μ m

- VMM3 ASIC, straw 55: 320 $\mu \rm{m}$
- \bullet ASD ASIC, straw 7: 122 $\mu \rm{m}$
- ASD ASIC, straw 55: 139 μm

SPS Testbeam description

PS T9 testbeam setup

- Tracking system: AZALEA tracker
- Cherenkov for electron tagging
- Straws:
 - Combined Straw prototype (20mm, 10mm & 5mm straws)
 - Single 10mm straw
- Charge measurements
 - Custom single channel charge sensitive pre-amplifier by O. Minko, JINR (~500 ns integration time)
 - Hadrons 0.3, 0.5, 1, 2 GeV/c
 - Electrons: 2 GeV/c
- Time measurements
 - VMM-based and ASD-based readouts
 - $\bullet\,$ Hadrons, 5 & 15 GeV/c

phot

SPS Testbeam description

MPV as function of particle momentum, 0.1 mm distance to wire

mean dE/dx as momentum (BARREL ONLY)

Electrons are tagged with the Cherenkov detector 15 mV threshold

Tried to veto muons behind the concrete block

Last two days :

- decreased momenta of primary protons (down to 15 GeV)

=> higher population of low momentum hadrons

PS Testbeam, tracking resolution

Reference tranking for low momentum particles

- Not optimized for particle energy below 6 GeV
- Track reconstruction optimization is ongoing
- Current track resolution: ${\sim}60\text{-}110\mu\text{m}$
- For charge resolution we do not need precision tracking, only the track chord length

Track resolution, 1GeV

Track resolution, 500 MeV

- SPD

PS T9 current results

- The custom charge amplifier was used
- The integration time around 500ns, larger then straw drift time will allow to study the straw potencial
- Analysis is ongoing

Summary

- First measurements with the ASD readout good time resolution is achievable
- Analysis on time and charge resolution on ASD-based readout are ongoing
- Time resolution studies with 93:7 Ar:CO₂ and different overpressure
- First data taking with a small prototype with 2 degree stereo-angle
- Measurements with low momenta hadrons analysis ongoing

StrawTrackerRD team is very greatful to the sMDT group of the University of Michigan for the common datataking with ASD readout and to CERN SPS/PS and DRD1 teams for beam opportunity and instrumentation.