Measuring D^0 from D^{*+} Decays at the SPD

Amaresh Datta (amaresh@jinr.ru)

DLNP Dubna, Russia

Nov 08, 2024

1/20

Nov 08, 2024

Vertex Detector Configurations

- \bullet Since background for D meson detection is enormous ($\sim 3-4$ orders of magnitude higher), extra handle to tag D mesons are extremely useful
- A subset of D^0 (subsequent discussion holds also for the anti-particle counterpart) comes from decays of excited states (D^{*0}, D^{*+})
- D^{*0} decays to D^0 accompanied by soft photons or π^0 and are not very helpful for tagging due to large background and poor energy resolution for such soft/low-energy photons
- Bulk (67.7%) of the D^{*+} decays via $D^{*+} \longrightarrow D^0 \pi^+$ and the charged pions can be used to tag such events
- Suggestion from Igor Denisenko

Some Relevant Cross-sections

- NA-27 (European Hybrid Spectrometer) at CERN measured D meson cross-sections with 400 GeV/c proton beam ($\sqrt{s} = 27.4$ GeV)
- Total cross-sections with 15-20 % uncertainty, giving us very decent idea what to expect
- $\sigma(D^0) = 10.5 \pm 1.7 \ \mu b, \ \sigma(\bar{D}^0) = 7.9 \pm 1.5 \ \mu b$
- $\sigma(D^+) = 5.7 \pm 1.0 \ \mu {
 m b}, \ \sigma(\bar{D}^-) = 6.2 \pm 1.0 \ \mu {
 m b}$
- $\sigma(D^{*+}/D^{*-}) = 9.2 \pm 2.2 \ \mu$ b. Assuming excited states having same ratio as regular charged versions :
- $\sigma(D^{*+})\sim$ 4.4 μ b. BR of $D^{*+}\longrightarrow D^0\pi^+$: 67.7%, leading to :
- $\sigma(D^0 \text{ from } D^{*+}) \sim 2.98 \ \mu$ b, about 28% of all D^0
- Source : Phys. Lett. B, vol. 189, no. 4, p. 476-482

We lose statistics of signal by 72%, but we may be able to reduce background by a larger factor, improving S/B ratio and figure of merit

Amaresh Datta (amaresh@jinr.ru) (JINR) Measuring D^0 from D^{*+} Decays at the SPD

Nov 08, 2024 4 / 20

Simulation Setup

- Pythia8 + SpdRoot, open-charm process for signal and minimum-bias process for backgrounds
- MAPS (barrel only) vertex tracker used
- KFParticle package used to combine π^+ , K to reconstruct D^0
- All π⁺ (assumed perfect PID) are combined (four vectors) with D⁰ candidate to reconstruct D^{*+} (mass = 2.01 GeV/c²)

Invariant mass distribution of $\pi^+ K^-$ from signal events

Kinematic Properties of the π^+ from D^{*+} Decay

Low p_T charged pions, mostly within $10^0 - 35^0$ polar angle, ending up in the end caps

Nov 08, 2024 6 / 20

Reconstructed D^{*+} : Signal Events

Reconstructed D^{*+} with decent precision (\sim 13 MeV/ c^2)

Reduced mass has very high precision ($\sim 4~{\rm MeV}/c^2$)

2 M signal events

NICA

Reconstructed D^{*+} Candidate : Background Events

Reconstructed D^{*+} candidates

50 M background events

Reduced mass distribution for D^{*+} candidates

Background (and Signal) Reductions

- With cuts on ALL relevant variables (decay length, its uncertainty, opening angle, collinearity angle, DCA of daughter tracks to PV, V0 and each other, DCA of V0 to PV) :
 - (1) signal suppression : 3.0×10^{-2}
 - 2 background suppression : 1.1×10^{-4}
- With ONLY reduced mass requirement :
 - **1** signal suppression : 2.1×10^{-2}
 - 2 background suppression : 2.9×10^{-5}
- Simulation statistics not enough to make meaningful background reduction estimates and subsequently, uncertainty calculation, however ...

9 / 20

Back of the Envelop Calculations

Multiplicative factor up to S/B = 1

Multiplicative factor for S/B > 1

Uncertainty decreases as S/B increases

Back of the Envelop Calculations

- Uncertainty to the TSSA $\sigma_{A_N^{Sig}} = \frac{\sqrt{\sigma_{A_N^{Sig}}^{2} + r^2 \sigma_{A_N^{2}}^{2}}}{1 r}$, where $r = \frac{Bkg}{Raw}$
- If we can reduce background by a further factor of 100 (beyond the result of regular cuts) while improving S/B by a factor of 20 ...
- Both moderate assumptions given that S/B improves by a factor of 4 simply replacing all cuts form our previous studies by this one cut
- $\sigma_{A_N^{Sig}}$ reduces by \sim 30%

11 / 20

Outlook

- This analysis was done with barrel only MAPS vertex detector
- End Caps for MAPS vertex detector will improve this type of measurement (low p_T charged pions)
- Finally have large scale simulated data production chain working. Test production of 20M min-bias (with DSSD) was finished
- With significant amount of min-bias data (100M 1B), these studies (of rare processes) can give a more definitive and quantitative answer for now, we run out of background events
- In general, this low statistics but cleaner channel seems promising

12/20

Thank You

Amaresh Datta (amaresh@jinr.ru) (JINR) Measuring D^0 from D^{*+} Decays at the SPD

Nov 08, 2024 13 / 20

イロト イボト イヨト イヨト

Backup

Amaresh Datta (amaresh@jinr.ru) (JINR) Measuring D^0 from D^{*+} Decays at the SPD

Nov 08, 2024 14 / 20

→ < ∃ →</p>

• • • • • • • • • •

$\pi^+ K^-$ Invariant Mass

Invariant mass of $\pi^+ K^-$ for signal and background events in simulation $\pi^+ K^-$ Image: A math Nov 08, 2024 15 / 20

Decay Length

Amaresh Datta (amaresh@jinr.ru) (JINR) Measuring D^0 from D^{*+} Decays at the SPD

Nov 08, 2024 16 / 20

< □ > < @ >

Decay Length Divided by Uncertainty

Comparison of decay length divided by uncertainty

Figure of merit : decay length divided by uncertainty

17 / 20

Opening Angle between Pion and Kaon

Amaresh Datta (amaresh@jinr.ru) (JINR) Measuring D^0 from D^{*+} Decays at the SPD

Nov 08, 2024 18 / 20

Distance of Pion, Kaon from Primary Vertex

Comparison of daughter DCA to PV

Figure of merit : daughter DCA to PV

Amaresh Datta (amaresh@jinr.ru) (JINR) Measuring D^0 from D^{*+} Decays at the SPD

Nov 08, 2024 19 / 20

Distance between Pion and Kaon

Amaresh Datta (amaresh@jinr.ru) (JINR) Measuring D^0 from D^{*+} Decays at the SPD

Nov 08, 2024 20 / 20