

FARICH

Artem Ivanov JINR, Dubna

SPD Collaboration Meeting 8.11.2024

Focusing Aerogel RICH detector in SPD

FARICH detector: basic principles

This work was carried out under the supervision of A.Yu. Barnyakov from the Budker Institute of Nuclear Physics, Novosibirsk.

Particle ID in SPD

FARICH in SpdRoot: geometry

FARICH in SpdRoot: geometry

FARICH detector

n(400)=1.0370,	L=7.00 mm
n(400)=1.0410,	L=10.00 mm
n(400)=1.0430,	L=9.00 mm
n(400)=1.0470,	L=10.00 mm

<u>Air</u>

<u>Photon detector</u>

MCP PMTs N6021 from NNVT

- 8×8 pixels with size 5.8×5.8 mm²
- Lateral size 51×51 mm²
- Thickness = 1.7 mm

FARICH in SpdRoot: optical propertiesFARICH detector<u>Aerogel</u>

Air

<u>Photon detector</u>

FARICH reconstruction: by dependence $\theta_c vs \phi_c$

The simulation of FARICH was done at the SpdRoot framework for sets of particles: electrons, muons, pions, kaons, and protons. Momentum range is from p_{th} to 8 GeV. Currently, only Cherenkov photons from the ring are being studied.

The dependence of polar angle of Cherenkov photons θ_{c} on azimuth angle ϕ_{c} are used for reconstruction

$$\theta_c(\varphi_c|\beta, n, \theta_t) = \arccos\left(\frac{1}{n\beta}\right) + \arccos\left(n\left(1 - (\vec{n}_0\vec{n}_\gamma)^2\right) + (\vec{n}_0\vec{n}_\gamma)\sqrt{1 - n^2\left(1 - (\vec{n}_0\vec{n}_\gamma)^2\right)}\right)$$

- n average value refraction index of radiator
- $(\vec{n}_0 \vec{n}_\gamma) = \cos \theta_t / (n\beta) + \cos \varphi_c \sin \theta_t \sqrt{1 1/(n\beta)^2}$
- \vec{n}_0 and \vec{n}_γ vectors of the radiator and Cherenkov cone normal, respectively

FARICH reconstruction: θ_c vs p_{rc}

Separation power

Particle ID in SPD

11

Status of FARICH in SpdRoot

Simulation

geometry description Optical processes

Recostuction

Fit by dependence θ_c vs φ_c

PID

Probabilities calculation

Global likelihood PID

uses all particle data in event for a construct likelihoods Local likelihood PID

uses likelihood for each Cherenkov ring separately used in case where lower track densities, no overlap of rings

FARICH simulation

1 event

$\sqrt{27}$, SoftQCD=all

Global likelihood PID

uses all particle data in event for a construct likelihoods Local likelihood PID

uses likelihood for each Cherenkov ring separately used in case where lower track densities, no overlap of rings

Local likelihood PID algorithm

- reconstructed track is extrapolated to FARICH
- Cherenkov Ring (hits) is associated to track
- construct likelihood function for 5 particle type hypotheses

L(h) = L(h; p, n) $L(h) = L(h; p, n) \times L(h; p, \theta)$

n is measured n and θ are measured

The probability density for a particular hit i;

$$F(\theta_i, \theta_{hyp}) = pS(\theta_i, \theta_{hyp}) + (1 - p)B(\theta_i)$$

- signal
$$S(\theta_i, \theta^{hyp}) = \frac{1}{\sqrt{2\pi * \sigma_i}} e^{\frac{(\theta_i - \theta_{hyp})}{2\sigma_i^2}}$$

- background $B(\theta_i) = B_0 \theta_i$ - signal fraction $p = \frac{N_{exp, signal}}{N_{exp}}$

$$G(n, n_{\text{exp}}) = \frac{(n_{\text{exp}})^n}{n!} e^{-n_{\text{exp}}}$$

n - number of registered photoelectrons $n_{exp} = (n_{exp, signal} + n_{exp, bgr}) - expected number of photoelectrons$

$$\log L(h) = \sum_{i=i}^{n} \log F(\theta_i, \theta_{hyp}) + \log G(n, n_{exp})$$

17

In case n_e^b=0

$$\log L(h) = \sum_{i=i}^{n} \log \frac{1}{\sqrt{2\pi * \sigma_i}} e^{\frac{(\theta_i - \theta_{hyp})^2}{2\sigma_i^2}} + \log \frac{(n_e)^n}{n!} e^{-n_e}$$

calculate

 n_e - expected number of photoelectrons θ_{hyp} - expected Cherenkov angle

measure

- n measure number of photoelectrons
- θ_i measure Cherenkov angle
- σ_i single angular resolution

$$\sigma_i = \sqrt{\delta_{pix}^2 / (\sqrt{12} L n)^2 + \sigma_{aer}^2 + \sigma_{trk}^2}$$
 ~0.06

Mean of photons as (θ_{c}, p)

Mean of θ_c as p

log(LH_{pion}) - log(LH_{kaon})

FARICH reconstruction: θ_c **vs** p_{rc}

PID with strict criteria

Eff and Cont with strict criteria

FARICH in SpdRoot

Simulation

SpdFarich *farich = new SpdFarich();
farich->setopticalphysics(true);

build FARICH detector set optical physics (true/false)

run->AddModule(farich);

Reconstruction

SpdFarichMCHitProducer *farich_hits_producer = new SpdFarichMCHitProducer(); farich_hits_producer->SetVerboseLevel(1); Run->AddTask(farich_hits_producer);

create FARICH hit

SpdMCFarichParticleProducer *mcfarich_part = new SpdMCFarichParticleProducer(); mcfarich_part->SetVerboseLevel(1); Run->AddTask(mcfarich_part);

calculate θ_c and LH

FARICH in SpdRoot

Analysis

const TClonesArray *particles_farich = 0; const TClonesArray *mc_farich_hits = 0;

IT->ActivateBranch("FarichParticles"); IT->ActivateBranch("FarichMCHits");

mc_farich_hits = IT->GetFarichHits();
particles_farich = IT->GetFarichParticles();

Read FARICH from file

SpdFarichParticle *ffarichparticle = (SpdFarichParticle *)particles_farich->At(IdhitFarich);

```
Int_t hitid = ffarichparticle->GetHitId();
SpdFarichMCHit *mc_farich_hit = (SpdFarichMCHit *)mc_farich_hits->At(hitid);
```

vHitPhoton = mc_farich_hit->GetvHitPhotonCenterPixel(); ThetaC = ffarichparticle->GetThetaC(); Chi2ndf = ffarichparticle->GetChi2ndf(); X, Y, Z positions of photons Cherenkov angel from fit

Conclusion

- FARICH is upload to Development branch of SpdRoot
- Some modification still need to do in code
- LH criteria for PID selection will be optimized and LH code will added to Development branch SpdRoot

~two weeks