Its (SVD) description in SpdRoot source code

Vasyukov Artem email: avasyukov@jinr.ru

Silicon Vertex detector

• **Silicon vertex detector** (SVD) is responsible for precise determination of the primary interaction point and measurement of the secondary vertices from the decays of short-lived particles.

Silicon Vertex detector

• **Silicon vertex detector** (SVD) is responsible for precise determination of the primary interaction point and measurement of the secondary vertices from the decays of short-lived particles.

- SVD is planned to be installed in the second stage of SPD operation. On 1st stage Micromegas-beased Central tracker will be installed.
- It is assumed that it will be based on one of two technologies: MAPS (main) and DSSD (backup).

Main requirements:

- Geometry close to 4π;
- Reconstruction efficiency for muons > 99% at $p_{\mu} < 13 \text{ GeV/c}, |\eta| < 2.5$
- Low material budget;
- Coordinate resolution $\sigma_{r,\phi} < 50 \ \mu m, \ \sigma_z < 100 \ \mu m;$

MAPS option (main)

DSSD option

SVD in SpdRoot source code (master) Geometry construction

SVD in SpdRoot source code (master) Problems

In the current version of the SpdRoot code there are two points that do not satisfy us in the description of SVD:

1) Currently, the same classes are used to describe both versions of SVD

+ Code flexibility

Fixed

https://indico.jinr.ru/event/4853/#2-status-of-svd-description-in

- Complicates the code

- Changing the description of one of SVD options may affect the other \rightarrow complication of further development

The selection of a specific version of the internal detector is made using GeoType flags:

SpdItsGeoMapperX::Instance()->SetGeometryPars(gtype1, gtype2);

layers+ladders parameters 1 - MAPS 2,3 (default) - DSSD chip parameters 1 - MAPS 2 (default), 3 - DSSD

2) The description of End-caps for the MAPS option is not supported.

For MAPS option one should use:

SpdItsGeoMapperX::Instance()->EnableEndcaps(0);

SVD in SpdRoot source code (master) Dssd

SpdRoot

TDR

- Barrel layer thickness: 500 µm;
- Local rotation angle for ladder: 15 grad;
- End-cap disk parameters:
 - Width: 300 μm;
 - → R_{min}: 3.5 cm; (TDR 3.2 cm)
 - → R_{max}: 22 cm; (TDR)
- Positions of DSSD end-caps:
 - ± 41.45 cm; (TDR)
 - ± 51.45 cm; (TDR)
 - ± 61.45 cm; (TDR)

After separation 1 possible geotype:

SpdDssdGeoMapper::Instance() \rightarrow SetGeometryPars(1);

Instead of

SpdItsGeoMapperX::Instance()->SetGeometryPars(3,2);

SVD in SpdRoot source code (master) Maps

- Barrel layer thickness: 330 μm (0.35%X₀);
- Radii of layers: 40 mm, 96 mm, 152 mm, 210 mm
- The lengths of layers are 762 mm, 889 mm, 1016 mm, 1270 mm (**for no reason**);

After separation 1 possible geotype:

SpdMapsGeoMapper::Instance() → SetGeometryPars(1);

Instead of

SpdItsGeoMapperX::Instance()->SetGeometryPars(1,1);

SVD performance test DSSD (no End-Caps)

Isotopic production of 1.5 GeV muons at (0, 0, 0) point

Detector subsystems:

- Dssd SVD
- Straw tracker (barrel + EC)

Magnetic field is on

SVD performance test DSSD (with End-Caps)

Isotopic production of 1.5 GeV muons at (0, 0, 0) point

Detector subsystems:

- Dssd SVD
- Straw tracker (barrel + EC)

Magnetic field is on

SVD performance test MAPS (no End-Caps)

4000F

3500

3000

2500

2000

1500

1000

500

Isotopic production of 1.5 GeV muons at (0, 0, 0) point

Detector subsystems:

- Dssd SVD
- Straw tracker (barrel + EC)

Magnetic field is on

Resolution $\sigma_1 \sim 0.97\%$ $\sigma_2 \sim 3.87\%$ $\sigma_w \sim 1.34\%$

#hits in straw

Role model: Muon Forward Tracker (ALICE experiment) **TDR:** https://cds.cern.ch/record/1981898 **Detector web page:** https://alice-collaboration.web.cern.ch/menu_proj_items/MFT

350 mm

Closer look

- It is based on Alpide chip architecture;
- Five disks, each one has 2 detection planes;
- The overlap between sensors of the back and front plane ensures the hermeticity of the half-disk
- Material budget: 0.6% X₀ per disk

End-cap for MAPS implementation in SpdRoot

End-cap for MAPS implementation in SpdRoot

•	One EC layer; EC Ladder thickness: 290 μ m (0.3%X ₀) EC Layer material budget: 290 + 290 μ m of silicon 0.6%X ₀ MFT Alice TDR; Distance between sensitive planes: 20 mm; (for no reason) Rmin: 5cm;			
•	Rmax:	21 cm (as for Bar	rel);	
•	Position:	± 69 cm; (for no	reason)	
	Future o	ptimization is need	led	
	For Maps EC is Barrel	used the same hit p	production algorithm as for	

per				
1				
addor				
auuei				
1 [1 1] MapsECChip1 MapsECLadder1				
13 [2 14] MapsECChip1 MapsECLadder1	0			
11 [15 25] MapsECChip1 MapsECLadder1	1			
10 [26 35] MapsECChip1 MapsECLadder1	2			
10 [36 45] MapsECChip1 MapsECLadder1	3			
10 [46 55] MapsECChip1 MapsECLadder1	4			
10 [56 65] MapsECChip1 MapsECLadder1	5			
10 [66 75] MapsECChip1 MapsECLadder1	б			
11 [76 86] MapsECChip1 MapsECLadder1	7			
12 [87 98] MapsECChip1 MapsECLadder1	8			
13 [99 111] MapsECChip1 MapsECLadder1	9			
5 [112 116] MapsECChip1 MapsECLadder2				
12 [117 128] MapsECChip1 MapsECLadder2	0			
12 [129 140] MapsECChip1 MapsECLadder2	1			
11 [141 151] MapsECChip1 MapsECLadder2	2			
10 [152 161] MapsECChip1 MapsECLadder2	3			
9 [162 170] MapsECChip1 MapsECLadder2	4			
8 [171 178] MapsECChip1 MapsECLadder2	5			
7 [179 185] MapsECChip1 MapsECLadder2	б			
5 [186 190] MapsECChip1 MapsECLadder2	7			
7 [191 197] MapsECChip1 MapsECLadder3				
8 [198 205] MapsECChip1 MapsECLadder4				
9 206 214 MapsECChip1 MapsECLadders				
10 [215 224] MapsECChip1MapsECLadder6				
11 225 235 MapsECChip1 MapsECLadder				
12 [236 247] MapsECChip1MapsECLadder8				
12 [248 259] MapsECChip1 MapsECLadders				

Performance test

Isotopic production of 1.5 GeV muons at (0, 0, 0) point

Detector subsystems:

- Dssd SVD
- Straw tracker (barrel + EC)

Magnetic field is on

Resolution Graph 4000F 0.08 error bars -3500 0.06 resolution σ₁~0.96% $\Delta p/p$ mean 3000 0.04 σ<mark>2 ~3.30%</mark> 2500 0.02~**1.29**% 2000 -0.02 1500 -0.041000 -0.06 500 -0.08 -0.1

#hits in straw

VIII SPD collaboration meeting || 07/11/2024

Performance test comparing with no Ens-cap MAPS option

Conclusion and plans

- The descriptions of the MAPS and DSSD detectors have been completely separated in source code;
- End-caps description for MAPS has been developed. Further optimization study is needed; .
- Using MAPS EC improves momentum resolution in large pseudorapidity region;
- Confirmation from Physical coordinator is expected to make changes to the development branch;

SpdRoot Resolution is modeled with Gaussian smearing in a simplified way: Double_t ures = 275 * mkm_/TMath::Sqrt(12.); Double t pitch v = u * TMath::Tan(25.71/2*TMath::DegToRad()) / 320; Double t vres = pitch v / TMath::Sqrt(12.):

TDR

https://indico.jinr.ru/event/3317/contributions/18119/ attachments/13663/22684/Denisenko_SVD.pdf

To do:

- Push updates in development branch of SpdRoot main repository.
- Realistic description of DSSD End-caps .

Thank you for your attention!

Performance test $|\eta| < 2.5$

