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Intro

● Attempt to distinguish pion and muon reconstructed tracks using NN
● ~100K fully reconstructed events (~1.5M tracks) including charmonia production
● Discriminating variables: track length, pt, eta, number of hits in detector 

subsystems
●  =======================================================
● Include dE/dx information? Include vertex information and account for correlations 

between different tracks in the same event?

●  =======================================================
● Tracks are split in bins w.r.t. total momentum
● chi2/ndf is required to be less than 10 to cut marginal track candidates
●

●  =======================================================
● Different machine learning approaches are tested.

● Simple NN based on Keras API is used of structure 140-35-35, Adam optimizer
● Custom NN API (C++ based) that allow custom evolutionary training algorithm 

and different options for the optimization (loss) functions and overtraining 
control. 
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Track candidates: input variables
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● pT is not a reliable discrimination 
variable, since pT spectra strongly 
depend on the specific physical process 
contributions.

● pT can be used on top of the identification 
result in case muons from specific 
process (e.g., charmonia decay) are 
selected
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Track candidates: input variables
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chi2/ndf is required to be less 
than 10 to cut marginal track 
candidates



Track candidates: input variables – extrapolation to RS
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● Track parameters in RS provide strong discrimination information. Very few pion tracks 
reach RS and have long extrapolated tracks.

●

● Extrapolation code is slow, so one of the tasks would be to speed it up… work is in progress 
on this
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Track candidates: input variables

● Correlations between 8 new input variables. pT excluded.
● Yellow (blue) color correspond to positive (negative) correlations between variables
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Problems in common NN APIs: hyperparameters optimization

● In addition to explicit parameters (synapse 
weights, neuron shifts) NN includes a lot of 
implicit parameters (number of layers, neurons 
in layers, activation functions, specific set of 
input variables, options for training algorithm, 
etc.) that are referred to as hyperparameters.

● Particular choice of hyperparameters can 
substantially affect the performance of the NN. 
Intuitive choices are often far from optimal.

● There are applications that allow optimization 
of hyperparameters (e.g., optuna). In practice 
they show poor performance, since 
hyperparameter space is essentially irregular.

● Moreover, memory leaks is a common 
problem for the hyperperameter optimization 
applications being applied to python based NN 
APIs. 7
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Evolutionary algorithm for NN training 

● Most of this problems can be (partially) solved. However, a lot of custom 
code required.

● Some of the problems (like feeding non-differentialble loss to gradient 
training algorithm,  optimization of hyperparameters and memory leaks) 
are problematic to address.

● One of the possible solutions is using custom NN API (c++ based in my 
case) that uses evolutionary algorithm for training.

● Non-differentiable functions are allowed, since no gradients are 
computed.

● Uncertainties of the input values can be included and reflected to the 
uncertainty of the NN input, thus automatically accounting for different 
‘importance’ of different input events.

● Input neurons can be ‘switched off’ for those events where some of inputs 
are not defined.

● Overtraining is controlled by comparing ROC-AUC, significance or NN 
output distributions between training and testing samples.

● Hyperparameters can be optimized alongside explicit parameters, c++ 
code allows simple and transparent memory management.
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Evolutionary algorithm for NN training 

● This custom NN API is applied to the pion-muon identification task.
● Just 3 input variables are used for the test purpose (track length, track 

length in RS, number of hits in RS)
● NN implementation is simple, involving classes for neuron layers and 

synapse connection layers.
● Deep NN with 2 hidden layers (15, 9 neurons) is constructed, containing 

189 synapse connections (~380 explicit parameters)
● Population of 50 neural networks is created
● At each training step (generation) the one or few best performing NNs 

give rise to their children with random mutations of the parameters 
applied

● Overtraining is controlled by the difference between ROC-AUC for 
training sample and testing sample.
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Track candidates: NN response to signal and background
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muons from psi decays

pions

muons from pion decays

A small contribution from non-prompt muons coming from pion decays. 
These muons are softer compared to prompt muons – most of them reside below 1.5GeV
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Track candidates: NN response to signal and background
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muons from psi decays

pions

muons from pion decays

Non-prompt muons coming from pion decays can be supressed using vertex information.
A transverse distance cut of 0.5 mm is applied for the track vertices.
Pion decays in RS were not properly reconstructed in MC. One may anticipate they also have poor consistency 
with PV candidates.
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Track candidates: NN application. Muons and pions with 1.5GeV < pT < 2.5GeV

● Background suppression
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Possible WP:
● Signal eff  9.902e-01  BG rejection  5.451e-01
● Signal eff  9.813e-01  BG rejection  6.407e-01
● Signal eff  6.938e-01  BG rejection  9.901e-01
● Signal eff  7.972e-01  BG rejection  9.802e-01

● Overtraining is controlled by 
comparing ROC-AUC for 
testing and training samples

● The observed difference is 
<0.4 permille

● Comparison of NN response 
to training and testing 
samples for signal and 
background are shown on the 
plots. No systematic 
deviations are seen.
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)
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All muons in MC sample come from charmonia decays.
In absence of identification, pions present ~10% background under J/psi signal. To be higher in real data, in part.,
due to kaon and proton contribution and higher multiplicity in general.

muons from psi decays

pions
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)
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All muons in MC sample come from charmonia decays.
After soft cut on the NN response (NN score < 0.5) that preserve >99% of muons the level of background is much 
lower

muons from psi decays

pions
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)
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All muons in MC sample come from charmonia decays.
After tighter cut on the NN response (NN score < 0.35) that preserve ~98% of muons the background is extinct

muons from psi decays

pions
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Conclusions and Plans

● Custom NN API has been developed with its performance and available options are 
designed for detector data analysis

● Hits in subsistems, track length and simplest track kinematics allow some limited 
discrimination between muon and pion tracks.

● Range System extrapolation allows much stronger discrimination.
● Extrapolation to RS is slow – work is ongoing on its optimization.
● Try to consider tracks separately in RS barrel and RS end-cap.
● Include proton and kaon tracks as background
●

● Contribution to muon sample from pion decays is small and can be further supressed by 
using vertex information. These muons contribute to the soft part of momentum spectrum.

● Dedicated MC is generated with artificially increased pion decay probability. NN to be 
trained to distinguish muons coming from these decays.

●

● It would be important to account for track parameters uncertainties. This is possible with our 
custom NN.

●

● NN results are tested on Jpsi sample and allow complete suppresion of background
● Vertex information and accounting for decay kinematics allow further discrimination between 

signal and background.

●

THANKS FOR ATTENTION
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Backup slides
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OLD results:    Track candidates: NN application

● Total track momentum between 1.5 and 1.7 GeV
● AUC = 0.83
● Muon eff 0.9 correspond to pion rejection of 0.65
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New result:    Track candidates: NN application

● Total track momentum between 1.5 and 2.1 GeV
● AUC = 0.97
● Muon eff 0.99 corresponds to pion rejection of ~0.6
● Pion rejection of 0.99 corresponds to muon efficiency of ~0.7 19

● ~3K muon tracks and ~3K 
pion tracks are used for NN 
training+testing;

● Momentum range 1.5-2.1GeV 
is used;

● More statistics to be included 
after more MC events 
processed.
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