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Intro

Attempt to distinguish pion and muon reconstructed tracks using NN

~100K fully reconstructed events (~1.5M tracks) including charmonia production
Discriminating variables: track length, pt, eta, number of hits in detector
subsystems

Include dE/dx information? Include vertex information and account for correlations
between different tracks in the same event?

Tracks are split in bins w.r.t. total momentum
chi2/ndf is required to be less than 10 to cut marginal track candidates

Different machine learning approaches are tested.

* Simple NN based on Keras API is used of structure 140-35-35, Adam optimizer

e Custom NN API (C++ based) that allow custom evolutionary training algorithm
and different options for the optimization (loss) functions and overtraining
control.
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Track candidates: input variables
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Events / 1

Track candidates: input variables
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Events /1 cm

Track candidates: input variables — extrapolation to RS
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« Track parameters in RS provide strong discrimination information. Very few pion tracks
reach RS and have long extrapolated tracks.

« Extrapolation code is slow, so one of the tasks would be to speed it up... work is in progress
on this
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Track candidates: input variables

Correlation Matrix (signal)
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« Correlations between 8 new input variables. pT excluded.
* Yellow (blue) color correspond to positive (negative) correlations between variables
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 In addition to explicit parameters (synapse
weights, neuron shifts) NN includes a lot of
Implicit parameters (number of layers, neurons
In layers, activation functions, specific set of
Input variables, options for training algorithm,
etc.) that are referred to as hyperparameters.

Particular choice of hyperparameters can
substantially affect the performance of the NN.
Intuitive choices are often far from optimal.

There are applications that allow optimization
of hyperparameters (e.g., optuna). In practice
they show poor performance, since

hyperparameter space is essentially irregular.

Moreover, memory leaks is a common
problem for the hyperperameter optimization
applications being applied to python based NN

APIs.
SPD Collaboration meeting, 08.11.2024

Problems in common NN APIs: hyperparameters optimization
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Evolutionary algorithm for NN training

Most of this problems can be (partially) solved. However, a lot of custom
code required.

Some of the problems (like feeding non-differentialble loss to gradient
training algorithm, optimization of hyperparameters and memory leaks)
are problematic to address.

One of the possible solutions is using custom NN API (c++ based in my
case) that uses evolutionary algorithm for training.

Non-differentiable functions are allowed, since no gradients are
computed.

Uncertainties of the input values can be included and reflected to the
uncertainty of the NN input, thus automatically accounting for different
‘importance’ of different input events.

Input neurons can be ‘switched off’ for those events where some of inputs
are not defined.

Overtraining is controlled by comparing ROC-AUC, significance or NN
output distributions between training and testing samples.
Hyperparameters can be optimized alongside explicit parameters, c++
code allows simple and transparent memory management.
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Evolutionary algorithm for NN training

e This custom NN API is applied to the pion-muon identification task.

 Just 3 input variables are used for the test purpose (track length, track
length in RS, number of hits in RS)

* NN implementation is simple, involving classes for neuron layers and
synapse connection layers.

 Deep NN with 2 hidden layers (15, 9 neurons) is constructed, containing
189 synapse connections (~380 explicit parameters)

* Population of 50 neural networks is created

* At each training step (generation) the one or few best performing NNs
give rise to their children with random mutations of the parameters
applied

* Overtraining is controlled by the difference between ROC-AUC for
training sample and testing sample.
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Track candidates: NN response to signal and backaround
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A small contribution from non-prompt muons coming from pion decays.
These muons are softer compared to prompt muons — most of them reside below 1.5GeV
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Track candidates: NN response to signal and backaround
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Non-prompt muons coming from pion decays can be supressed using vertex information.

A transverse distance cut of 0.5 mm is applied for the track vertices.

Pion decays in RS were not properly reconstructed in MC. One may anticipate they also have poor consistency
with PV candidates.
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Track candidates: NN application. Muons and pions with 1.5GeV < pT < 2.5GeV

« Signal efficiency
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« Background suppression .
Possible WP:

Signal eff 9.902e-01 BG rejection 5.451e-01
Signal eff 9.813e-01 BG rejection 6.407e-01
Signal eff 6.938e-01 BG rejection 9.901e-01
Signal eff 7.972e-01 BG rejection 9.802e-01
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Overtraining is controlled by
comparing ROC-AUC for
testing and training samples

The observed difference is
<0.4 permille

Comparison of NN response
to training and testing
samples for signal and
background are shown on the
plots. No systematic
deviations are seen.
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)
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All muons in MC sample come from charmonia decays.
In absence of identification, pions present ~10% background under J/psi signal. To be higher in real data, in part.,
due to kaon and proton contribution and higher multiplicity in general.

13
SPD Collaboration meeting, 08.11.2024



J/psi selection using NN response (1.5GeV < pT < 2.5GeV)

hdpsimass_matched
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All muons in MC sample come from charmonia decays.
After soft cut on the NN response (NN score < 0.5) that preserve >99% of muons the level of background is much
lower
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J/psi selection using NN response (1.5GeV < pT < 2.5GeV)

hdpsimass
10* =
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All muons in MC sample come from charmonia decays.
After tighter cut on the NN response (NN score < 0.35) that preserve ~98% of muons the background is extinct
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Conclusions and Plans

« Custom NN API has been developed with its performance and available options are
designed for detector data analysis

 Hits in subsistems, track length and simplest track kinematics allow some limited
discrimination between muon and pion tracks.

* Range System extrapolation allows much stronger discrimination.
« Extrapolation to RS is slow — work is ongoing on its optimization.
e Try to consider tracks separately in RS barrel and RS end-cap.

* Include proton and kaon tracks as background

e Contribution to muon sample from pion decays is small and can be further supressed by
using vertex information. These muons contribute to the soft part of momentum spectrum.

* Dedicated MC is generated with artificially increased pion decay probability. NN to be
trained to distinguish muons coming from these decays.

It would be important to account for track parameters uncertainties. This is possible with our
custom NN.

* NN results are tested on Jpsi sample and allow complete suppresion of background
» Vertex information and accounting for decay kinematics allow further discrimination between
signal and background.

THANKS FOR ATTENTION
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Backup slides
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OLD results: Track candidates: NN application
Background Rejection vs. Signal Efficiency

Background Rejection
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Signal Efficiency

e Total track momentum between 1.5 and 1.7 GeV

« AUC=0.83
* Muon eff 0.9 correspond to pion rejection of 0.65
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New result: Track candidates: NN application

Background rejection (Specificity)

Signal efficiency vs. Background rejection
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Total track momentum between 1.5 and 2.1 GeV

AUC = 0.97

Muon eff 0.99 corresponds to pion rejection of ~0.6

Pion rejection of 0.99 corresponds to muon efficiency of ~0.7
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* ~3K muon tracks and ~3K
pion tracks are used for NN
training+testing;

* Momentum range 1.5-2.1GeV
IS used;

* More statistics to be included
after more MC events
processed.
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