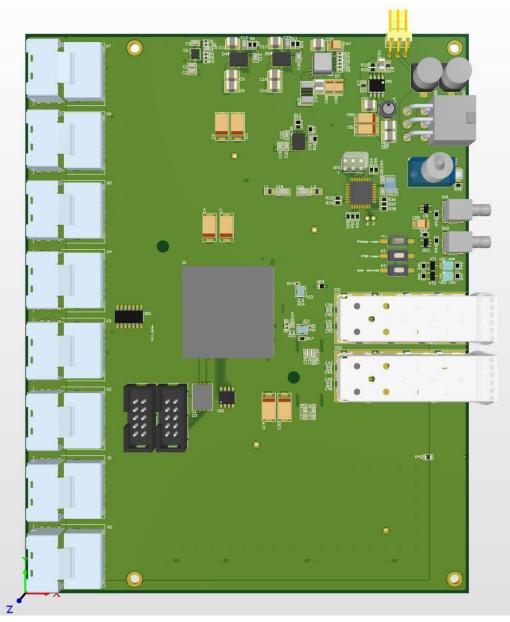


Status of L1 concentrator

Aleksandr Boikov

on behalf of DAQ group

E-mail: Boikov@jinr.ru


1

PCB of L1 concentrator (Current prototype)

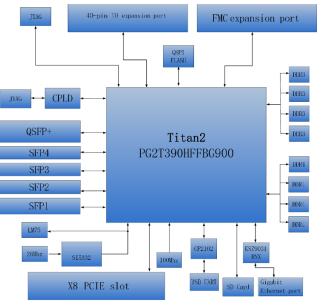
- Cyclone 10GX (105YF780E6G)
- 8x Links for connect front-end boards (miniSAS connectors) 8 diff pairs per connector
- SFP+ 10Gb transceiver for data transmission to L2
- SFP+ transceiver for TSS (White Rabbit)

Concentrator tasks:

- Collecting data from the front-end boards
- Distribution of clock and commands from TSS
- Data integrity and timestamp control
- Slow control for FEB
- Reconfiguring front-end boards? (firmware)

PANGOMICRO (option for L1)

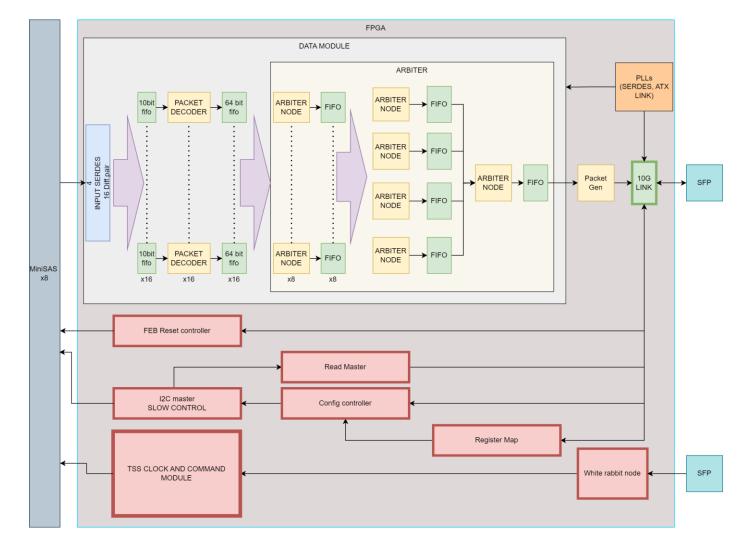
Pangomicro TITAN 2 (Chinese FPGA)


- Available for us (without sanctions) cost 220\$ per chip
- Pin 2 pin compatible Xilinx Kintex 7 (differences in architecture)
- More resources compared to Cyclone 10GX
- Not detailed documentation
- There are a lot of problems with the IDE (at the moment)

Resource name		PG2T390H
	LUT6	243600
CLM	logical unit	389760
CLM	FF	487200
	Distributed ram (Kb)	4712
DRM (36Kbit	s/ pc)	480
APM(units)		840
PLLs	GPLLs	10
PLLS	PPLLs	10
ADC	Dedicated analog channel (differential input pair)	1
(dual core)	Multiplexed analog channels (differential input pair)	11
SERDES LANE (1)		16
PCIE GEN2×8	CORE	1

ALINX APX390 (Current available development board for TITAN 2)

- Good documentation and reference designs for work
- Today: Ready 10 G link
- Need test SERDES and integration of White Rabbit.
- For CDR (clock data recovery) mode need own development


Changed Firmware architecture

Last 5 month:

- 1. Changed internal data bus (AvalonST/MM to AXIS/AXIL)
- 2. Minimized use of IP-cores from the manufacturer of FPGA. (PLLs, SERDES and Transceivers is remained)
- 3. All control registers can be generated by using SystemRDL tool. (HDL, C-header, Docs) thanks V. Borch for help with this task
- 4. Completed support for UDP, ARP and ICMP for standalone operation without L2
- 5. Added support *raw* Ethernet II frames for communication between L1 and L2

Plans:

- 1. Integrating and test TSS command generator (TSS group provided source code)
- 2. Integration of modules for control L1 via L2 (L2 group provide source code)
- 3. Preparing an example IP-core for communication between FEB and L1
- 4. Preparing an example design of a TSS command receiver for FEB.

Plans of Firmware verification

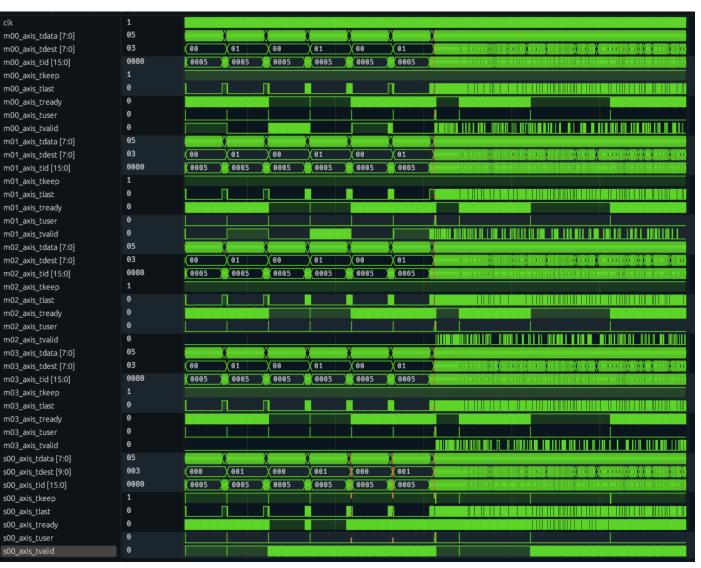
Now:

Using partially manual verification with only HDL tools.

Plans:

Use special Python based Open-Source framework Cocotb for verification.

Optional:


CI/CD for build firmware and long test

	<pre>** test_axis_switch.run_test_001</pre>		7330.00	
	<pre>** test_axis_switch.run_test_002</pre>		7340.00	
	<pre>** test_axis_switch.run_test_003</pre>		23530.00	
	<pre>** test_axis_switch.run_test_004</pre>		23530.00	
Coooth	<pre>** test_axis_switch.run_test_005</pre>		23550.00	
Cocotb	<pre>** test_axis_switch.run_test_006</pre>		23550.00	
	<pre>** test_axis_switch.run_test_007</pre>		23570.00	
Example	<pre>** test_axis_switch.run_test_008</pre>		23570.00	
Exampto	<pre>** test_axis_switch.run_test_tuser_assert_001</pre>		440.00	
	<pre>** test_axis_switch.run_test_tuser_assert_002</pre>		440.00	
	<pre>** test_axis_switch.run_stress_test_001</pre>		13130.00	
	<pre>** test_axis_switch.run_stress_test_002</pre>		40530.00	
	<pre>** test_axis_switch.run_stress_test_003</pre>		45430.00	
	<pre>** test_axis_switch.run_stress_test_004</pre>		43130.00	
	***************************************	*****	*****	***
	** TECTS_14 DASS_14 EATL A SKTD_A		200070 01	

run stress test 004 m

*********	*******	*****	*****	*****	***
TEST	STATUS	SIM TIME (ns)	REAL TIME (s)	RATIO (ns/s)	**
***************************************	*******	*****	*****	*****	***
test_axis_switch.run_test_001		7330.00	0.10	74458.06	**
test_axis_switch.run_test_002		7340.00	0.09	84677.96	**
test_axis_switch.run_test_003		23530.00	0.26	91518.48	**
<pre>test_axis_switch.run_test_004</pre>		23530.00	0.28	84762.75	**
test_axis_switch.run_test_005		23550.00	0.21	109535.18	**
test_axis_switch.run_test_006		23550.00	0.21	112090.92	**
test_axis_switch.run_test_007		23570.00	0.30	79542.59	**
test_axis_switch.run_test_008		23570.00	0.31	75783.28	**
<pre>test_axis_switch.run_test_tuser_assert_001</pre>		440.00	0.01	39235.86	**
<pre>test_axis_switch.run_test_tuser_assert_002</pre>		440.00	0.01	56601.69	**
<pre>test_axis_switch.run_stress_test_001</pre>		13130.00	0.17	78828.12	**
<pre>test_axis_switch.run_stress_test_002</pre>		40530.00	0.48	84978.20	**
<pre>test_axis_switch.run_stress_test_003</pre>		45430.00	0.42	108203.20	**
<pre>test_axis_switch.run_stress_test_004</pre>		43130.00	0.57	75306.52	**
*************	*****	*****	*****	****	***
TESTS=14 PASS=14 FAIL=0 SKIP=0		299070.01	3.97	75294.06	**

Cocotb Example

E-Link port

Dedicated line for:

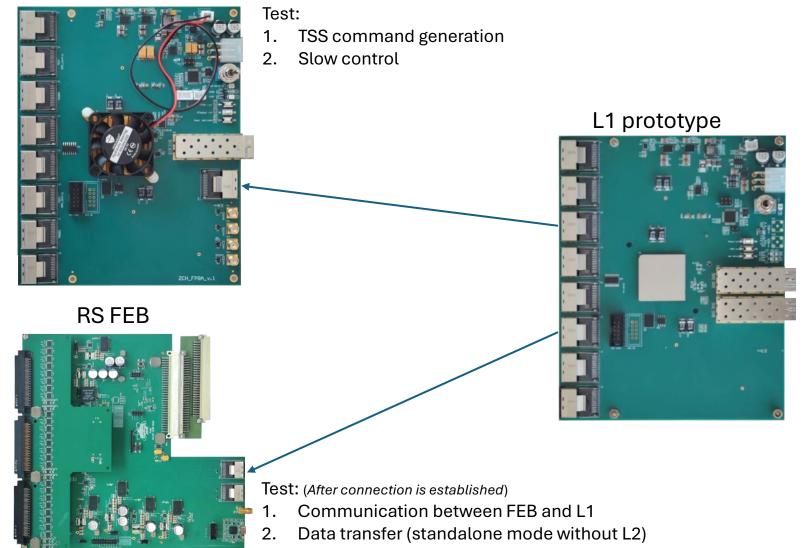
- Start of slice
- Start of frame
- Set Next Frame
- Global clock from L1 to Front-End
- Clock for data. From Front-End to L1
- Data lines (Max 1250 Mbps)
- 8 Unipolar lines for slow interface and different signals

SPI OPTIONS

Line on FEB	Signal description	Line on L1	Comments
ТХО	Data line from FEB	RX0	
TX1	Data line from FEB	RX1	
TX2	Data line (RECONFIG?)	RX2	
ТХЗ	Clock line from FEB	RX3	Synchronization Clock for data line
RXO	Clock from L1	ТХО	Global cklock from TSS
RX1	Start of Slice (SNF)	TX1	
RX2	Start of Frame (SOS)	TX2	
RX3	Set Next Frame (SOF)	ТХЗ	Frame number (32 bit data)
Unipolar 0	Reset (HARD)	Unipolar 7	Hard reset of FEB (active hight)
Unipolar 1	SCIK	Unipolar 3	Clock for SPI (5-10 MHz)
Unipolar 2	CS_1	Unipolar 4	CS for slow control
Unipolar 6	CS_2 (optional)	Unipolar 5	CS for reconfig (optional)
Unipolar 7	MOSI (L1)	Unipolar 0	Data from L1
Unipolar 3	MISO (L1)	Unipolar 1	Data from FEB
Unipolar 4	Ready (From FEB)	Unipolar 2	FEB initialized (after RESET)
Unipolar 5	Ready (From L1)	Unipolar 6	Data line synchronized

I2C OPTIONS

VS


Line on FEB	Signal description	Line on L1	Comments
ТХО	Data line from FEB	RX0	
TX1	Data line from FEB	RX1	
TX2	Data line (RECONFIG?)	RX2	
ТХЗ	Clock line from FEB	RX3	Synchronization Clock for data line
RX0	Clock from L1	ТХО	Global cklock from TSS
RX1	Start of Slice (SNF)	TX1	
RX2	Start of Frame (SOS)	TX2	
RX3	Set Next Frame (SOF)	ТХЗ	Frame number (32 bit data)
Unipolar 0	Reset (HARD)	Unipolar 7	Hard reset of FEB (active hight)
Unipolar 1	SCL	Unipolar 3	Clock for I2C
Unipolar 2	SDA	Unipolar 4	Data line I2C
Unipolar 6	?	Unipolar 5	
Unipolar 7	?	Unipolar 0	
Unipolar 3	?	Unipolar 1	
Unipolar 4	Ready (From FEB)	Unipolar 2	FEB initialized (after RESET)
Unipolar 5	Ready (From L1)	Unipolar 6	Data line synchronized

Min	MiniSAS			
Constant of the second	Service III			

Pin	Side B	Side A	Pin
function	Pin	Pin	function
GND	B1	A1	GND
Tx0+	B2	A2	Rx0+
Tx0-	B3	A3	Rx0-
GND	B4	A4	GND
Tx1+	B5	A5	Rx1+
Tx1-	B6	A6	Rx1-
GND	B7	A7	GND
Unipolar 0	B8	A8	Unipolar 7
Unipolar 1	B9	A9	Unipolar 3
Unipolar 2	B10	A10	Unipolar 4
Unipolar 6	B11	A11	Unipolar 5
GND	B12	A12	GND
Tx2+	B13	A13	Rx2+
Tx2-	B14	A14	Rx2-
GND	B15	A15	GND
Tx3+	B16	A16	Rx3+
Tx3-	B17	A17	Rx3-
GND	B18	A18	GND

Hardware *Plans*

Our FEB test board

Thanks for your attention