

SPbPU results based on State assignment

SPbPU working group:

Berdnikov Y.A., <u>Larionova D.M.</u>, Lobanov A.A, Shapaev D., Musyaev E.V., Antsupov S.M., Pavzderin P.O., Selezenev A.D.

What was stated in the State assignment (SPD part)

- Comparative analysis of prompt photon production in d+d collisions, generated using nuclear modified PDFs and in d+d collisions generated using free nucleon PDFs at NICA energies
- Development of a generator of polarized proton interactions with prompt photon production based on generative adversarial neural networks (GAN)
- Development and testing of technical solutions for synchronization system elements based on White Rabbit technology (Report «Current status of TSS development. White Rabbit precision and accuracy» by O. Mamutova)

Works performed

- Simulation of prompt photon production in d+d collisions at \sqrt{s} = 13.5 GeV and \sqrt{s} = 27 GeV (ICPPA-2024, Shapaev D.S., Berdnikov Ya.A. The creation of prompt photons during interactions of deuterium nuclei at energies of 13.5 GeV and 27.0 GeV // SPbPU J. Phys. and Math. 2024. V. 17. Nº 4)
- Application of generative adversarial neural networks (GAN) to compute prompt photon A_{LL} in longitudinally polarized p+p collisions at \sqrt{s} = 27 GeV (ICPPA-2024, Lobanov A.A., Berdnikov Y.A. Direct photons asymmetries in longitudinally polarized proton-proton collisions at energy $\sqrt{s_{NN}}$ = 27 GeV // SPbPU J. Phys. and Math. V. 18. Nº 1.)
- Identified charged hadrons measurements in the PHENIX experiment as a prototype for SPD studies (Larionova D. PhD thesis)

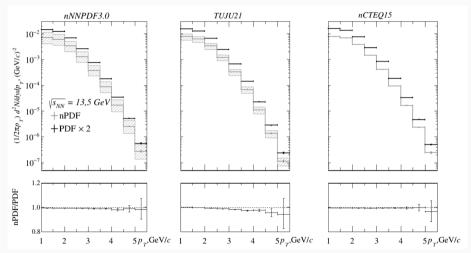
Simulation of prompt photon

production in d + d collisions

Shapaev D.S., Berdnikov Ya.A.

Simulation of prompt photon production in d + d collisions

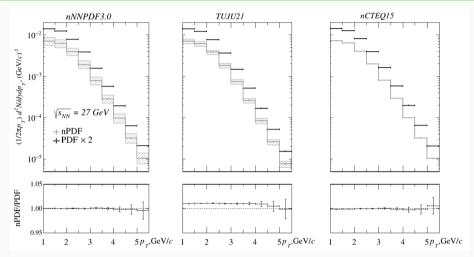
Prompt photon invariant spectra and nuclear modification factors in d+d collisions at $\sqrt{s_{NN}}$ = 13.5 and 27.0 GeV/nucleon are obtained.


Two methods:

- 1. Free nucleon PDFs are used and $d + d = \frac{1}{4}(pp + pn + np + nn)$. The neutron PDFs are obtained via proptn PDFs using isospin symmetry, for example, $u^p = d^n u^n = d^p$
- 2. Nuclear-modified PDFs are used for simulation of d + d collisions (include nuclear effects: shading, EMC effect, Fermi motion, etc.).

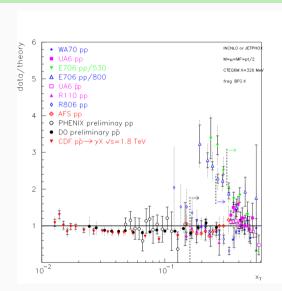
Simulation – Pythia8 PDF sets – nNNPDF, TUJU, nCTEQ15

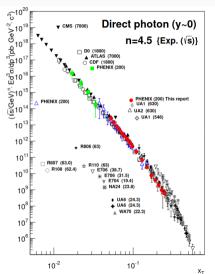
Prompt photon invariant p_T spectra, $\sqrt{s_{NN}}$ =13.5 GeV



Invariant p_T spectra obtained by different methods coincide within uncertainties.

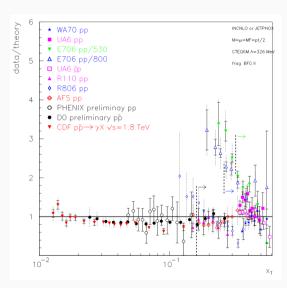
Prompt photon invariant p_T spectra, $\sqrt{s_{NN}}$ =27 GeV



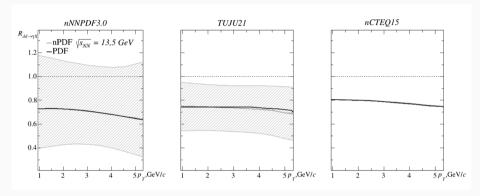


Invariant p_T spectra obtained by different methods coincide within uncertainties.

Direct photon data compared to NLO calculations

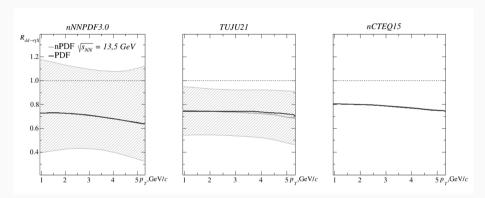


Direct photon data compared to NLO calculations


- **×** E706
- ✓ UA6 (24.3 GeV)
- ✓ WA70 (22.3 GeV)

Pythia8 – LO calculations Presented work – is the first step of the analysis

Prompt photon R_{AA} , $\sqrt{s_{NN}}$ = 13.5 GeV

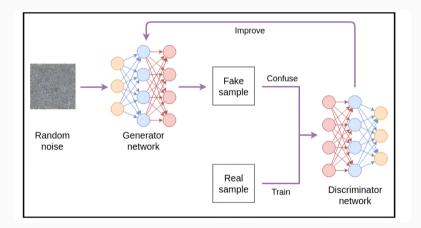


$$R_{AA} = \frac{d^2N_{dd}/p_Tdp_Tdy}{d^2N_{pp}/p_Tdp_Tdy}$$

 $R_{AA} = 1$ means absences of nuclear modification

 $R_{AA}=1$ means absences of nuclear modification Prompt photon $R_{AA}\approx 0.8$ at $1~{\rm GeV}/c < p_T < 5~{\rm GeV}/c$ Isosptin effects predominate over other nuclear modification effects

- 1. It is established that the consideration of nuclear-modified parton distribution functions weakly affects the predictions of the prompt photon invariant p_T spectra and nuclear modification factors measured in d + d collisions.
- 2. Prompt photon $R_{AB} \approx 0.8$ at 1 GeV $< p_T < 5$ GeV
- 3. Isosptin effects predominate over other nuclear modification effects


Application of GAN to simulation of longitudinally polarized p+p

collisions at \sqrt{s} = 27 GeV

Lobanov A.A., Berdnikov Y.A.

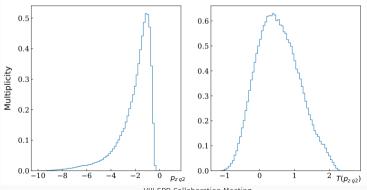
GAN – generative adversarial neural network with following architecture:

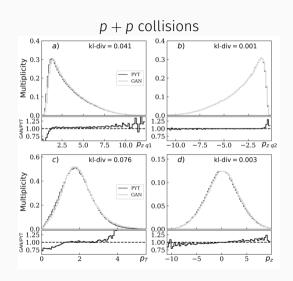
Pythia8 settings

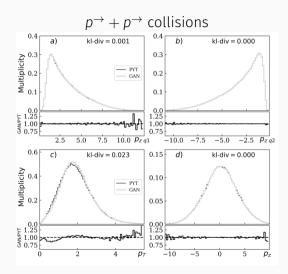
Pythia8 was used for modeling direct photons production in unpolirized/polirized p + p collision at energy $\sqrt{s_{NN}}$ = 27 GeV. Setting below was used:

- Beam:eCM = 27;
- PromptPhoton: qg2qgamma = on;
- PromptPhoton: qqbar2ggamma = on;
- MultipartonInteraction: pT0Ref = 2.2;
- PDF:pSet = LHAPDF6:NNPDFpol11_100 for polarized PDF;
- PDF:pSet = LHAPDF6:NNPDF31_nlo_as_0118 for unpolarized PDF;

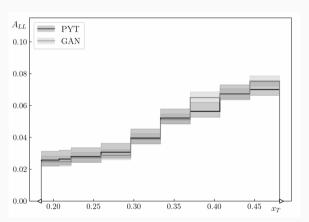
100'000 events for unpolarized and longituadially polarized p+p collisions were generated.


Transformed features


Features were choosen:


- For direct photons: p_x , p_y , p_z
- For partons: p_{zq1} , p_{zq2}

But for better work of GAN $T(p_{zq1}) = ln(p_{zq1})$ and $T(pzq2) = ln(p_{zq2})$ were used.



Prompt photon A_{LL} asymmetries obtained with the help of GAN and PYTHIA8

GAN reproduces prompt photon A_{LL} asymmetries and agrees with the PYTHIA8 results within uncertainties.

Application of GAN to simulation of longitudinally polarized p+p collisions at \sqrt{s} = 27 GeV

- Presented GAN allows to reproduce PYTHIA results with an accuracy of about
 5%.
- Time to simulate 10^6 collisions using PYTHIA is \sim 5m 40s
- Time to simulate 10^6 collisions using trained GAN is \sim 1m 12s
- ✓ Thus, GAN allows to \sim 4 times accelerate the process of simulation p+p collisions
- ✓ GAN can be trained on experimental data, obtained at availabele energies, and then used to estimate observables at intermediate energies.

Identified charged hadrons measurements in the PHENIX experiment as a prototype for SPD studies

Larionova D.M., Berdnikov Y.A.

Identified charged hadrons measurements in the PHENIX experiment as a prototype for SPD studies

The analysis of identified charged hadron production is more suitable for the MPD experiment

However, the PHENIX experience may be useful for the SPD nuclei program:

- · Centrality identification
- \cdot J/ ψ measurements as a probe of possible phase transition
- Prompt photon measurements as a probe of possible phase transition (prompt photon production in d + d collisions is the first step)

Studies of nuclei collisions have not been mentioned in state assignment for 2024 – future plans (next year?)

Thank you for attention!

