SPD Collaboration Week FEE for Straw Readout

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Speaker: Vitaly Bautin on behalf of Straw Tracker Team

05.11.2024

Straw tubes – operation principle

- thin wall drift tube of small (O(cm)) diameter
- proportional mode
- drift time of ~first (or ~second) closest to anode electrons represents quite well the distance between the track of the ionizing particle *R* and anode wire

The drift time t_{drift} is measured as the difference between time t_o when an ionizing particle crossed the straw and the time when the induced straw signal exceeded a given threshold.

GARFIELD + LTSpice allows to predict straw response for a given readout model.

See S. Nasybulin report at SPD Physics and MC meeting #21: https://indico.jinr.ru/event/2981/contributions/15896/attachments/ 12139/20276/MagneticInStraw_spice_results.pdf

Motivation:

- 30k+ channels
- 150um spatial resolution
- 8% dE/dX charge resolution
- Simultanious Charge & Time measure

A dedicated R&D is ongoing to study the possibilities for STT Front-End Electronics (FEB) solution.

Setup 1

Setup 2

Setup 3

CERN, H4 (Nov 2021) 3 GEMs + straw station VMM3a readout CERN, H4 (2022) 4 MMs w/ APV25 readout + straw station w/ VMM3 readout CERN, H8 + H4 (2023) 4MMs + straw station TIGER readout

The VMM3a readout option was rejected based on testbeam 2021 results, due to a channel latching logic in Time-of-Threshold readout mode issues. + data taking in magnetic field

CERN, H8 + H4 (**2024**) 6x Si planes VMM / TIGER/ ATLAS ASD readout

Tracking resolution was significantly improved by using Si-tracker.

T0 resolution is still better than 1ns with our scintillators

Coordinate resolution as a function of Time resolution

Investigating existing readout solutions

9

Number of channels	64	
Clock frequency	1080 MHz	
Input capacitance	<300 pF	
Dynamic range	up to 2 pC	
Gain	0.5, 1, 3, 4.5, 6, 9, 12, 16 mV/fC	
Peaking time	25 / 50 / 100 / 200 ns	
ENC (energy branch)	<3000 e ⁻	
TDC binning	~1 ns	
Maximum event rate	140 kHz/ch	
Consumption	15 mW/ch	

VMM3/3A ASIC is well known chip for gaseous detectors. It has amplifier and shaper adjustable in a wide range. But it was not really done for the timing measurements so fastest shaping is 25ns and ToA mode has some issues.

10mm Straw Resolution

The weighted mean of spatial resolution (w/o +/- 1mm area) distribution is ~170 μm
The time 'resolution' is about 8 ns

Investigating existing readout solutions

TIGER architecture seems to be more reasonable, because of having two different shapers for Time and Energy measurements. Two threshold levels are also possible.

10mm Straw Resolution

The weighted mean of spatial resolution (w/o +/- 1mm area) distribution is 150 μm!
The time 'resolution' is about 6 ns!

Investigating existing readout solutions

ATLAS sMDT ASD2 chip is the closest solution for the tracker from analog point of view. It has fastest shaping time and good gain. It is capable for the simultanious charge measurements as well. But the resolution with that shaping time is to be studied.

10mm Straw Resolution

The weighted mean of spatial resolution (w/o +/- 1mm area) distribution is <100 μm!
The time 'resolution' is about 4 ns!

Summary table of SPD Straw Tracker parameters

Detector type	barrel	end-cap
Detector tasks	dE/dx	xy coordinates, dE/dx
Working mode	triggerless	triggerless
Detector inner diameter, mm	540	
Detector outer diameter, mm	1700	
Number of layers	30 (double layer)	2x, 2y, 2u, 2v
Number of stations, sections	8 sections	12 stations
Number of channels	32288	8192
Tube diameter, mm	10	10
Maximum tube length, mm	2400	1700
Central core diameter, mm	0.03	0.03
Maximum detector capacitance, pF	26	18,5
Gas detector	70 Argon, 30 CO ₂	70 Argon, 30 CO ₂
Operating voltage, V	+1650	+1650
Multiplication factor, HV=1750	4.5E4	4.5E4
Charge from the first electron, fC	7.7	7.7
Electron drift velocity, µm/ns	65	65
Electron drift time, ns	120	120
Ion drift time, µs	100	100
Spectral resolution, µm	150	150
Maximum load, kHz per tube	150	

See A. Solin report at SPD Coll. Meeting: https://indico.jinr.ru/event/3189/contributions/17520/attachments/13230/22121/14_Development %20of%20an%20ASIC%20for%20straw%20and%20micromegas%20detectors%20of%20the%20NICA-SPD.pdf