VIl SPD Collaboration meeting
Possible bottlenecks detection
in SpdRoot code

Didorenko Aleksei

didorenko@)jinr.ru

Voytishin Nikolay
nvovtish@jinr.ru

MLIT JINR

mailto:didorenko@jinr.ru
mailto:nvoytish@jinr.ru

Relevance

Spin Physics

Detector

SPD CDR&TDR

NEWS AND ANNOUNCEMENTS

UPCOMING CONFERENCES

CONTACTS

USEFUL LINKS

Collaboration

PARTICIPATING INSTITUTIONS

EXECUTIVE BOARD

TECHNICAL BOARD

PUBLICATION COMMITTEE

DOCUMENTS

SPD Presentations

SPD Software

SPD Software Wiki

Monte Carlo simulation, event reconstruction for both simulated and real data, data analysis

n are planned to be performed by an object oriented C++ toolkit SPDroot. It is

and partially compatible with MPDroot and BM@Nroot software used at MPD and BM@N,

respectively.

The SPD detector description for Monte Carlo simulation is based on the ROOT geometry while

ion of secondary particles through material of the setup and simulation of detector

provided by GEANT4 code. The standard multipurpose generators like Pythia6 and

well as specialised generators can be used for simulation of primary nucleon-nucleon

« GIT Repository

SpdRoot is a software package that is capable of
performing Monte Carlo simulation, reconstruction,
analysis and visualization of events.

It is stated that the reconstruction runs slower than
expected.

The current issue is to detect bottlenecks in SpdRoot’s
source code and further improve the processing speed
and efficiency of computing resources.

Purpose and tasks

Purpose of the work: to detect possible bottlenecks of the event reconstruction process
in the SpdRoot’s source code.
Tasks:

e define a method for detecting bottlenecks

e find a tool to detect bottlenecks

e analyze the SpdRoot software package via found tool

e analyze the results

echnology stack

[alxdid@ncx104 ~]$ perf

usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS]

The most commonly used perf commands are:
annotate Read perf.data (created by perf record) and display annotated code
archive Create archive with object files with build-ids found in perf.data file
bench General framework for benchmark suites
buildid-cache Manage build-id cache.
buildid-list List the buildids in a perf.data file
c2c Shared Data C2C/HITM Analyzer.
config Get and set variables in a configuration file.
data Data file related processing
diff Read perf.data files and display the differential profile
evlist List the event names in a perf.data file
ftrace simple wrapper for kernel's ftrace functionality
inject Filter to augment the events stream with additional information
kallsyms Searches running kernel for symbols
kmem Tool to trace/measure kernel memory properties
Kkvm Tool to trace/measure kvm guest os
list List all symbolic event types
lock Analyze lock events
mem Profile memory accesses
record Run a command and record its profile into perf.data
report Read perf.data (created by perf record) and display the profile
sched Tool to trace/measure scheduler properties (latencies)
script Read perf.data (created by perf record) and display trace output
stat Run a command and gather performance counter statistics
test Runs sanity tests.
timechart Tool to visualize total system behavior during a workload
top System profiling tool.
version display the version of perf binary
probe Define new dynamic tracepoints
trace strace inspired tool

PVS-Studio

e 'perf help COMMAND' for more information on a specific command.

™

e pLJ’[hOﬂ| | pandasmatpl- tlib

Profiling as a method for bottlenecks detection

Profiling is used to monitor the execution of

a program to collect data on various

aspects.

The purpose of profiling is to detect

bottlenecks or areas where the program can

be optimized to improve its efficiency and

performance.

Profiling can be:

. static (analyzes the program code
without executing it)

. dynamic (traces the program during its
execution)

perf as a tool for analyzing software performance

Lalxdid@ncx1ed ~]

usage: perf [--version] [--help] [OPTIONS] COMMAND [ARGS:

. . _ys . .
erf is a dynamic profiling tool that is designed
annotate Read perf.data (created by perf record) and display annotated code
archive Create archive with object files with build-ids found in perf.data file
bench General framework for benchmark suites

buildid-cache Manage build-id cache

:
:
for Linux-based systems. Advantages:
c2c Shared Data C2C/HITM Anal
config Get and set variables in a configuration file
data Data file related processing
a files and display the differential profile

i

e simple command line interface
) evlist List the event names in a perf.data file

ftrace simple wrapper for kernel's ftrace functionality

Filter to augment the events stream with additional information

. . - inject
° rich functiona |ty Bl ot m e G e
- kmem Tool to trace/measure kernel memory properties
kum Tool to trace/measure kvm guest os
list List all symbolic event types

Tock Analyze lock events
men Profile memory accesses

record Run a command and record its profile into per

Read perf.data (created by perf record) and display the profile

sched Tool to trace/measure scheduler properties (latencies)

script Read perf.data (created by perf record) and display trace output
stat Run a command and gather performance counter statistics

report

timechart en behavior during a workload
top System profiling tool

version display the version of perf binary

probe Define new dynamic tracepoints

trace strace inspired tool

See 'perf help COMMAND' for more information on a specific command

Flame Graph

One of the features of the perf tool is
flamegraph, which visualizes hierarchical data,
created to visualize traces of the profiled
software stack to quickly and accurately
identify the most common code paths.

‘mysqid” JOIN: :exec

mysqld” handle_select

Reconstruction startup parameters

The simulation and reconstruction were run using the
example of the decay of a j-psi particle into two
muons

s NICA / spdroot

¥ master v spdroot / macro / examples / jpsi-mumu

The magnetic field is 1/8 of the total size

#><. Updated jpsi-mumu example

%A Igor Denisenko authored 1year ago SdeleldMap 1_8 *MagField = new
SpdFieldMapl 8 ("full map");
e {asteatsmit MagField->InitData ("field fulll 8.bin");

SpdRegion *reg =
MagField->CreateFieldRegion ("box") ;

C analyze_jpsi.C Updated jpsi-mumu example reg->SetBoxRegion (- ’ ro - ’ ’
- ,):; // (X,Y,Z) (min,max), cm

C fit_dimu.C upadate 270321 run->SetField (MagField) ;

C reco.C Updated jpsi-mumu example

B3 run_all.sh Updated jpsi-mumu example

C simu.C Updated jpsi-mumu example

Reconstruction Flame Graph
FlameGraph displays the call of the reconstruction process functions.
 Each box - function;
» The width of the box shows the total time it was on-CPU;
» y-axis - stack depth;
« Xx-axis - sample population (sorted alphabetically);

colors are random

genfit::KalmanFitterRef..

"ERcEIET
; : -

genfit::AbsFitter::proc.. FairTask::ExecuteTasks 1[N |.|m LR | T [.]
T [NN | o | |
|SpdMCTracksFinder::Exec | | FairMonitor:: ~FairMonitor lllllTG | VI TG || A0 D00 COMM | T
| FairTask::ExecuteTasks (@ || /100 1010/ (SEESSNE e O | (!

PVS-Studio as a tool for static code profiling

PVS-Studio is a static analyzer of C, C++, C# and Java code designed to facilitate the
task of finding and fixing various kinds of errors: Improper understanding of
function/class operation logic, Incorrect handling of the types, Misprints, Dead code,
Copy-Paste, Uninitialized variables, Unused variables, Undefined/unspecified behavior,

etc.

#Start analyze
pvs-studio-analyzer analyze -o /path/to/PVS-Studio.log \
-e /path/to/exclude-path \
—<N>
#Get report
plog-converter —-a GA:1,2 \
-t json \
-o /path/to/Analysis Report.json \
/path/to/PVS-Studio. log

Static code profiling results. JSON - report

"code": "Vo78",
"cwe" : ,
"falseAlarm" : false,
"favorite" : false,
"level": ,
"message" : "An object is used as an argument to its own method. Consider checking the first actual
argument of the 'Transpose' function." ,
"positions" : [
{
"column" : ,
"endColumn" : ,
"endLine" : ,
"file": "/root/spdpvs/spdroot/external/GenFit2/trackReps/src/RKTrackRep.cc" ,
"line": ,
"navigation" : {
"columns" : ,
"currentLine" : ,
"nextLine" : ,
"previousLine" :
}
}
] 4
"projects": [1],

"SaStId" . mwn

Static code profiling results. Errors

The pie chart shows errors fraction of each type of the total number of errors.

Sections — types of errors.

Percentages - the percentage of error type from the total number of errors.

Gray section contains types for which only one error was found (also errors that belong to several types at the same time).

Improper understanding of function/class operation logic
Uninitialized variables

Misprints

Incorrect handling of the types

Copy-Paste

Undefined/unspecified behavior

Security issues

Unused variables

Others

40.2%

Arithmetic over/underflow

Buffer overrun AND Security issues

Illegal bitwise/shift operations

Improper understanding of function/class operation logic AND Resource leaks
Incorrect handling of the types AND Misprints

Incorrect handling of the types AND Security issues

Misprints AND Security issues

Null pointer / null reference dereference AND Unchecked parameter dereference

5.4%

7.6%

Static code profiling results. Files

49.1% Field
Eigen

GenFit
Region
External files
Params
Tracking

The pie chart shows SpdRoot code
parts with errors fractions from the
total number of files with errors
Sections — part of the SpdRoot
code.

Percentages - the percentage of
SpdRoot code part with errors from
the total number of files errors.
Gray section contains fraction of
external files.

0.9%
0.9%

1.9%

3.7%

Conclusion

e Dynamic profiling using perf did not give the desired results
e The static profiling method using PVS-Studio made it possible to
detect errors as well as to identify sections of the SpdRoot code with a

large number of errors

The results obtained can be useful to SpdRoot developers in improving
the processing speed and efficiency of computing resources in the
reconstruction process.

Thank you for your attention!

