
Possible bottlenecks detection
in SpdRoot code

Didorenko Aleksei
 didorenko@jinr.ru

Voytishin Nikolay
nvoytish@jinr.ru

 MLIT JINR

VIII SPD Collaboration meetingVIII SPD Collaboration meeting

mailto:didorenko@jinr.ru
mailto:nvoytish@jinr.ru

Relevance

SpdRoot is a software package that is capable of
performing Monte Carlo simulation, reconstruction,
analysis and visualization of events.

It is stated that the reconstruction runs slower than
expected.
The current issue is to detect bottlenecks in SpdRoot’s
source code and further improve the processing speed
and efficiency of computing resources.

Purpose and tasks

Purpose of the work: to detect possible bottlenecks of the event reconstruction process
in the SpdRoot’s source code.
Tasks:
● define a method for detecting bottlenecks
● find a tool to detect bottlenecks
● analyze the SpdRoot software package via found tool
● analyze the results

Technology stack

Profiling as a method for bottlenecks detection

Profiling is used to monitor the execution of
a program to collect data on various
aspects.
The purpose of profiling is to detect
bottlenecks or areas where the program can
be optimized to improve its efficiency and
performance.
Profiling can be:
● static (analyzes the program code

without executing it)
● dynamic (traces the program during its

execution)

perf as a tool for analyzing software performance
perf is a dynamic profiling tool that is designed
for Linux-based systems. Advantages:
● simple command line interface;
● rich functionality.

One of the features of the perf tool is
flamegraph, which visualizes hierarchical data,
created to visualize traces of the profiled
software stack to quickly and accurately
identify the most common code paths.

SpdFieldMap1_8 *MagField = new
SpdFieldMap1_8("full_map");
MagField->InitData("field_full1_8.bin");
SpdRegion *reg =
MagField->CreateFieldRegion ("box");
reg->SetBoxRegion(-330, 330, -330, 330,
-386, 386); // (X,Y,Z)_(min,max), cm
run->SetField(MagField);

Reconstruction startup parameters
The simulation and reconstruction were run using the
example of the decay of a j-psi particle into two
muons

The magnetic field is 1/8 of the total size

Reconstruction Flame Graph
FlameGraph displays the call of the reconstruction process functions.
• Each box - function;
• The width of the box shows the total time it was on-CPU;
• y-axis - stack depth;
• x-axis - sample population (sorted alphabetically);

colors are random

PVS-Studio as a tool for static code profiling
PVS-Studio is a static analyzer of C, C++, C# and Java code designed to facilitate the
task of finding and fixing various kinds of errors: Improper understanding of
function/class operation logic, Incorrect handling of the types, Misprints, Dead code,
Copy-Paste, Uninitialized variables, Unused variables, Undefined/unspecified behavior,
etc.

#Start analyze
pvs-studio-analyzer analyze -o /path/to/PVS-Studio.log \
 -e /path/to/exclude-path \
 -j<N>
#Get report
plog-converter -a GA:1,2 \
 -t json \
 -o /path/to/Analysis_Report.json \
 /path/to/PVS-Studio.log

Static code profiling results. JSON - report
 {
 "code": "V678",
 "cwe": 688,
 "falseAlarm": false,
 "favorite": false,
 "level": 2,
 "message": "An object is used as an argument to its own method. Consider checking the first actual
argument of the 'Transpose' function." ,
 "positions": [
 {
 "column": 1,
 "endColumn": 2147483647,
 "endLine": 966,
 "file": "/root/spdpvs/spdroot/external/GenFit2/trackReps/src/RKTrackRep.cc" ,
 "line": 966,
 "navigation": {
 "columns": 0,
 "currentLine": 1153117847,
 "nextLine": 1988692485,
 "previousLine" : 1391284327
 }
 }
],
 "projects": [],
 "sastId": ""
 }

Static code profiling results. Errors
The pie chart shows errors fraction of each type of the total number of errors.
Sections – types of errors.
Percentages - the percentage of error type from the total number of errors.
Gray section contains types for which only one error was found (also errors that belong to several types at the same time).

Static code profiling results. Files

The pie chart shows SpdRoot code
parts with errors fractions from the
total number of files with errors
Sections – part of the SpdRoot
code.
Percentages - the percentage of
SpdRoot code part with errors from
the total number of files errors.
Gray section contains fraction of
external files.

Conclusion

● Dynamic profiling using perf did not give the desired results
● The static profiling method using PVS-Studio made it possible to

detect errors as well as to identify sections of the SpdRoot code with a
large number of errors

The results obtained can be useful to SpdRoot developers in improving
the processing speed and efficiency of computing resources in the
reconstruction process.

Thank you for your attention!

